https://www.dushevoi.ru/products/mebel-dlja-vannoj/Aquaton/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

их сумма равна 100. Второе число 8, предпоследнее – 92; их сумма тоже 100. Становится очевидным, что вы можете разбить числа на пары, и каждая пара в сумме даст 100. В ряду 24 числа, следовательно 12 пар чисел, следовательно сумма всех чисел этого ряда равна 1200. Исходя из этого примера, можно предположить общее правило: чтобы найти сумму арифметической прогрессии, нужно сложить первое и последнее число, а затем умножить на 1/2 количества всех членов прогрессии. Вы можете легко убедиться, что это верно не только для четных чисел, как в приведенном выше примере, но и для нечетных чисел.
Можно также предложить и новую формулировку этой формулы для того случая, если нам неизвестно последнее число прогрессии, а известно только первое число, количество членов и разность. Рассмотрим пример. Предположим, что первое число – 5, разность – 3, и количество членов 21. Тогда последнее число равно 5 + (20 х 3), т. е. 65. Таким образом, сумма первого и последнего членов равна 70, сумма прогрессии равна 1/2 от 70, умноженной на количество членов прогрессии, т. е. 70/2 х 21. Это 35 х 21, т. е. 735. Общее правило таково: прибавь квадрат первого члена к разности, умноженной на количество членов прогрессии минус 1, а затем умножь все это на 1/2 количества членов прогрессии. Это то же самое правило, которому выше была дана иная формулировка.
Рассмотрим теперь другую проблему. Предположим, у вас есть некоторое количество цистерн, каждая из которых представляет собой идеальный куб, т. е. длина, высота и ширина этого куба равны. Предположим, что измерения первой цистерны равны 1 футу, второй – 2 футам, третьей – 3 футам и т. д. Вы хотите узнать, какое количество кубических футов бензина поместится во все эти цистерны. В первую поместится 1 кубический фут, во вторую – 8, в третью – 27, в четвертую – 64, в пятую – 125, в шестую – 216, и т. д. Таким образом, то, что вы хотите знать, представляет собой сумму кубов стольких-то чисел. Вы заметили, что
1 amp; 8 = 9, т. е. 3 х 3, а 3 – это 1/2 от 2 х 3
1 amp; 8 amp; 27 = 36, т. е. 6 х б, а б – это 1/2 от 3 х 4
1 amp;8 amp;27 amp;64=100,т. е.10 х 10, а 10 – это 1/2 от 4 х 5
1 amp; 8 amp; 27 amp; 64 amp; 125 = 225, т. е. 15 х 15,а 15 – это 1/2 от 5 х б
1 amp; 8 amp; 27 amp; 64 amp; 125 amp; 216 = 441, т. е. 21 х 21, а 21 – это 1/2 от 6 х 7
На основании этого примера можно вывести правило для суммы кубов стольких-то целых чисел. Правило таково: умножь число рассматриваемых целых чисел на число, которое больше его на единицу, полученный результат подели пополам, а полученное число возведи в квадрат. Вы легко сможете убедиться в том, что эта формула верна с помощью так называемой «математической индукции». Это значит:
нужно предположить, что ваша формула верна для определенного числа, и доказать, что в этом случае она верна и для следующего числа. Докажем, что наша формула верна для 1. Следовательно, она верна для 2, и для 3, и т. д. Это весьма эффективный метод, с помощью которого были доказаны большинство свойств целых чисел. И часто, как и в приведенном выше примере, это позволяет вам сформулировать предположение в виде теоремы.
Рассмотрим другой вид задач, а именно задач «комбинаций и перестановок». Довольно часто они приобретают значимость, но мы начнем с простых примеров. Предположим, хозяйка хочет организовать вечер с ужином, на который она хотела бы пригласить 20 человек, но одновременно она может пригласить только 10. Каковы же варианты выбора? Очевидно, что существует 20 вариантов выбора первого гостя; когда он выбран, остается 19 вариантов выбрать второго и т. д. Когда выбрано 9 гостей, остается 11 вариантов, следовательно, последний гость может быть выбран, исходя из 11-ти вариантов. Итак, полное число вариантов равно
20 х 19 х 18 х 17 х 16 х 15 х 14 х 13 х 12 х 11.
Это довольно большое число; просто удивительно, почему хозяйки не путаются. Мы можем упростить ответ, используя так называемые «факториалы».
Факториал 2 обозначает произведение всех чисел до 2, т. е. 2;
Факториал 3 обозначает произведение всех чисел до 3, т. е. б;
Факториал 4 обозначает произведение всех чисел до 4, т. е. 24;
Факториал 5 обозначает произведение всех чисел до 5, т. е. 120;
и т. д.
Сейчас число вариантов выбора в нашем примере представлено факториалом 20, разделенным на факториал 10. Это задача и называется задачей «комбинаций». Общее правило таково, что число способов, которыми вы можете выбрать m вещей из n вещей (n» m), равно факториалу n, разделенному на факториал m.
Теперь рассмотрим «перестановки», где главная проблема заключается не в выборе вещей, а в их организации. Предположим, наша хозяйка выбрала 10 своих гостей и думает о том, как их посадить за столом. Она и ее муж сядут, как всегда, по бокам стола, а гости – на остальные 10 мест вокруг стола. Таким образом, для первого гостя существует 10 вариантов, для второго – 9 и т. д.; сумма вариантов равна факториалу 10, т. е. 3 628 800. К счастью, социальные правила, например, посадить мужчин напротив женщин или посадить мужей отдельно от жен, уменьшают варианты до 4 или 5.
Рассмотрим еще одну задачу в разделе «комбинации». Предположим, у вас есть некоторое количество предметов, и вы можете выбрать те, что вам нравятся – все или не одного. Сколько же у вас вариантов выбора?
Если у вас есть один предмет А, то у вас 2 варианта выбора – A или ничего.
Если у вас есть два предмета А и В, то у вас 4 выбора – А и В, или А, или В, или ничего.
Если у вас есть три предмета A B и C, то у вас 8 вариантов выбора:
A, B и C, A и B, A и C, B и C, A В, С или ничего.
Если у вас есть четыре предмета, то у вас 16 вариантов выбора. Общее правило таково, что число вариантов выбора равно 2, умноженному на себя столько раз, сколько предметов. Это, на самом деле, очевидно, потому что у вас есть два варианта по отношению к каждому предмету, а именно выбрать его или не выбрать, и когда вы сделали свой выбор по отношению к одному предмету, у вас остается полная свобода в отношении других.
Задачи комбинаций и перестановок имеют огромные возможности применения. Одна из них – это теория наследственности Менделя. Первые биологи, возродившие работы Менделя, практически не знали математики, но они обнаружили определенные соотношения чисел, постоянно фигурировавшие в опытах. Один из них рассказал об этом другу-математику, который сразу отметил, что соотношения этих чисел соответствуют некоторым соотношениям чисел, фигурирующим в теории комбинаций, и когда это было подмечено, то сразу стала видна и причина. Сегодня в теории Менделя широко используется математика. Возьмите, например, такую задачу: если определенная рецессивная характеристика дает вам преимущество в борьбе за существование, то будет ли она стремиться стать доминантной в популяции, в которой она появляется лишь изредка? А если это так, то сколько потребуется времени для того, чтобы определенный процент популяции приобрел эту характеристику, если мы знаем, какой процент популяции обладает этой характеристикой сегодня? Подобные проблемы часто имеют большое практическое значение, например, по отношению к распространению слабоумия или других психических дефектов.
Большая заслуга современной, по сравнению с античной, математики заключается в том, что она может оперировать с постоянными изменениями. Единственный вид движения, с которым могла оперировать античная или средневековая математика, было равномерное движение по прямой линии или по кругу.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 смеситель для душа grohe 

 каменная плитка на стены