https://www.dushevoi.ru/products/uglovye_vanny/ 

 

Так, например, эквивалентный вес кислорода равен 8 (см. гл. 5), атомный вес — 16, молекулярный вес — 32. При проведении расчетов удобнее всего пользоваться эквивалентным весом, который равен 8, почему же в таком случае для определения места кислорода в списке элементов следует использовать число 16?
Эта путаница с эквивалентным, атомным и молекулярным весами не только мешала решить вопрос о списке элементов, но и вообще отрицательно сказалась на развитии химии.
Разногласия по поводу относительных атомных весов, приписываемых различным атомам, привели к разногласиям и в отношении числа атомов отдельных элементов, входящих в данную молекулу.
Кекуле вскоре после опубликования своих предложений относительно структурных формул ясно понял, что его идея повиснет в воздухе, если химики не смогут прийти к согласию в вопросе об эмпирических формулах. Поэтому он предложил для обсуждения этого вопроса созвать конференцию ведущих химиков Европы. В результате в 1860 г. в г. Карлсруэ в Германии впервые в истории состоялась международная научная встреча химиков, получившая название «Первый международный химический конгресс».
На конгрессе присутствовало 140 делегатов, и среди них итальянский химик Станислао Канниццаро (1826—1910) [69]. Двумя годами ранее Канниццаро случайно обнаружил работу своего соотечественника Авогадро (см. гл. 5). Изучив эту работу, Канниццаро увидел, как с помощью гипотезы Авогадро можно разграничить понятия «атомный вес» и «молекулярный вес» для основных газообразных элементов и что, используя это различие, можно внести ясность в вопрос об атомных весах элементов вообще. Кроме того, он увидел, насколько важно четко отличать атомный вес от эквивалентного веса.
На конгрессе Канниццаро произнес яркую речь по этому вопросу, а затем распространил брошюру, в которой детально излагал свою точку зрения. Ему удалось убедить химиков в своей правоте, хотя произошло это не сразу и потребовало больших усилий. С этого времени в вопрос об атомных весах была внесена ясность и было по достоинству оценено значение таблицы атомных весов, составленной Берцелиусом (см. гл. 5).
Применительно к органической химии это означало, что теперь можно уже было договориться об эмпирических формулах соединений и продолжить изучение строения молекул, уточняя расположение атомов сначала плоскостное, а затем и пространственное.
В неорганической же химии теперь был принят рациональный порядок расположения элементов — в порядке увеличения их атомных весов. Как только такой список был составлен, химики смогли посмотреть на него под новым углом зрения.
Приведение элементов в порядок
В 1864 г. английский химик Джон Александер Рейна Ньюлендс (1837—1898) расположил известные элементы в порядке возрастания атомных весов. Составив такой список элементов, он обнаружил, что в полученном ряду можно выявить определенную закономерность в изменении свойств элементов (рис. 13). Когда Ньюлендс расположил элементы вертикальными столбцами по семь элементов в столбце, то выяснилось, что сходные элементы, как правило, попадают в одни и те же горизонтальные ряды. Так, калий располагается вслед за очень похожим на него натрием, селен располагается в одном ряду с похожей на него серой, кальций — рядом с похожим на него магнием и т. д. Действительно, в соответствующем ряду можно было найти каждую из трех триад Дёберейнера.

Рис. 13. «Закон октав» Ньюлендса (1864 г.).
Ньюлендс назвал открытую им закономерность законом октав , так как каждый восьмой элемент обладал свойствами, сходными с первым, девятый — со вторым и т. д.
(В музыкальной октаве семь нот, восьмая нота начинает новую октаву.) К сожалению, помимо рядов, содержащих сходные элементы, в таблице были ряды с совершенно непохожими элементами. Поэтому другие химики сочли такое совпадение случайным и отнеслись к открытию Ньюлендса как к не заслуживающему внимания факту. Ньюлендсу не удалось даже опубликовать свою работу.
Двумя годами раньше французский геолог Александр Эмиль Бегюйе де Шанкуртуа (1820—1886) также расположил элементы в порядке возрастания атомных весов и отметил их на так называемом «винтовом» графике. И в этом случае наблюдалась та же тенденция: сходные элементы попадали в вертикальные столбцы. Публикуя свое сообщение, Шанкуртуа не сопроводил его построенным им графиком, и его работа также осталась незамеченной (рис. 14).

Рис. 14. «Винтовой график» Бегуйе де Шанкуртуа (1862 г.) Расположив элементы в порядке возрастания их атомных весов, ученый соединил линиями элементы с похожими свойствами.
Более удачливым оказался немецкий химик Юлиус Лотар Мейер (1830—1895). Мейер рассматривал объемы, занимаемые весовыми количествами элемента, численно равными их атомным весам. При этом выяснилось, что в каждом таком весовом количестве любого элемента содержится одно и то же число атомов. Это означало, что отношение рассматриваемых объемов различных атомов равнялось отношению объемов отдельных атомов этих элементов [70]. Поэтому указанная характеристика элемента получила название атомный объем .
Графически зависимость атомных объемов элементов от их атомных весов выражается в виде ряда волн, поднимающихся острыми пиками в точках, соответствующих щелочным металлам (натрию, калию, рубидию и цезию). Каждый спуск и подъем к пику соответствует периоду в таблице элементов. В каждом периоде значения некоторых физических характеристик, помимо атомного объема, также закономерно сначала уменьшаются, а затем возрастают (рис. 15).

Рис. 15. График Мейера (кривая атомных объемов элементов).
Водород — элемент с наименьшим атомным весом — стоял в списке элементов первым. В то время принято было считать, что первый период включает лишь один элемент. (В современных таблицах первый период включает два элемента — водород и гелий.) Второй и третий периоды графика Мейера включали каждый по семь элементов, эти периоды дублировали октавы Ньюлендса. Однако в следующих двух периодах число элементов превышало семь. Таким образом Мейер показал, в чем ошибка Ньюлендса. Закон октав не мог строго выполняться для всего списка элементов, последние периоды должны были быть длиннее первых.
Мейер опубликовал свою работу в 1870 г. Годом раньше русский химик Дмитрий Иванович Менделеев (1834—1907) установил порядок изменения длины периодов элементов и наглядно продемонстрировал значение своего открытия [71].
Менделеев выполнял свою диссертационную работу в Германии, в Гейдельберге, как раз во время Международного химического конгресса в Карлсруэ. Он присутствовал на конгрессе и слышал речь Канниццаро, в которой тот четко изложил свою точку зрения на проблему атомного веса. Вернувшись в Россию, Менделеев приступил к изучению списка элементов и обратил внимание на периодичность изменения валентности у элементов, расположенных в порядке возрастания атомных весов: валентность водорода 1, лития 1, бериллия 2, бора 3, углерода 4, магния 2, азота 3, серы 2, фтора 1, натрия 1, алюминия 3, кремния 4, фосфора 3, кислорода 2, хлора 1 и т. д.
Основываясь на увеличении и уменьшении валентности, Менделеев разбил элементы на периоды; первый период включает только один водород, затем следуют два периода по семь элементов каждый, затем периоды, содержащие более семи элементов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 https://sdvk.ru/Firmi/Gustavsberg/Gustavsberg_Nordic/ 

 azteca