Итак, нам остается только вариант (I), который и имел место в действительности, — то есть, что жительница острова относилась к ночному типу и находилась ко сне. как она сама справедливо и полагала.
Подведем итоги: то, что мой первый приятель не сумел решить задачу, исключает из рассмотрения случай (3), а то, что ее не смог решить второй приятель, отбрасывает случай (2). Таким образом, нам остается только вариант (3), а именно что обитательница острова принадлежала к ночному типу и спала.
Эпилог. В начале этой главы я упоминал, будто бы весь этот остров мне приснился. Вместе с тем, если бы такого рода остров существовал на самом деле, то, значит, мне приснились бы истинные события. Поэтому, если бы я оказался одним из его обитателей, то меня следовало бы отнести к ночному типу.
Метаголоволомки
Последние две головоломки предыдущей главы (не считая эпилога) — образцы восхитительного класса задачек, которые мне хочется назвать метаголоволомками, или головоломками о головоломках. Например, нам предлагают головоломку без достаточного количества исходных данных, необходимых для ее решения, а потом сообщают, что кто-то еще либо смог, либо не смог решить эту задачу, воспользовавшись некоторой дополнительной информацией, но не всегда говорят, что же это была за информация. Суть, однако, в том, что мы все же получаем некую частичную информацию, которая в конце концов и позволяет нам найти решение задачи. Задачи этого жанра, к сожалению, редко встречаются в книгах. Ниже предлагаются пять таких головоломок — сначала совсем легкие, потом посложнее, а последняя венчает и эту главу, и предыдущие.
1. Дело Джона.
Как-то раз шло судебное расследование по делу двух братьев-близнецов. Было известно, что по крайней мере один из них никогда не говорил правду, хотя и не ясно, кто же именно. Одного из братьев звали Джон — именно он и совершил преступление. (При этом вовсе не обязательно, чтобы Джон был тем из близнецов, который всегда лгал.) Цель расследования заключалась в том, чтобы выяснить, кого же из братьев зовут Джон.
— Вы — Джон? — спросил судья одного из близнецов.
— Да, я Джон, — последовал ответ.
— А вы — Джон? — спросил судья второго брата.
Второй близнец ему ответил вполне определенно (либо «да», либо «нет»), и тут судья сразу догадался, кто из них Джон.
Был Джон первым или вторым из близнецов?
2. Трансильванская метаголоволомка.
Как мы уже знаем из гл. 4, все жители Трансильвании делятся на 4 типа:
1) люди в здравом уме;
2) люди, лишившиеся рассудка;
3) упыри, находящиеся в здравом уме;
4) упыри, лишившиеся рассудка.
Люди в здравом уме высказывают только истину (их утверждения всегда правильны и сами они честны). Люди, лишившиеся рассудка, всегда лгут (в силу собственных заблуждений, но отнюдь не умышленно). Упыри в здравом уме также всегда лгут (в силу своей природы, а не по заблуждению). Упыри, лишившиеся рассудка, всегда говорят правду (они убеждены в том, что их утверждения ложны, но умышленно лгут).
Так вот однажды три логика делились своими впечатлениями о поездках в Трансильванию, которые им пришлось в разное время совершить.
— Когда я там был, — сказал первый логик, — я встретил одного трансильванца, которого звали Айк. Я спросил его, является ли он человеком в здравом уме.
Айк мне ответил вполне определенно («да» или «нет»), но из его ответа я не сумел понять, к какому же типу он относится.
— Какое странное совпадение, — сказал второй логик я тоже повстречал этого самого Айка во время посещения острова. Я спросил его, является ли он упырем в здравом уме; он ответил мне вполне определенно («да» или «нет»), но я так и не смог сообразить, к какому типу он принадлежит.
— Какое совпадение! — воскликнул третий логик.
— Когда я был на острове, я тоже столкнулся с Айком и спросил его, является ли он упырем, лишившимся рассудка. Он тоже ответил мне вполне определенно («да» или «нет»), однако я, как и вы, не смог установить, кем же он был в действительности.
Находится ли Айк в здравом уме или он лишился рассудка? Человек он или упырь?
3. Метаголоволомка о рыцаре и плуте.
В моей уже упоминавшейся книге «Как же называется эта книга?» приведено множество увлекательных задач об острове, обитатели которого относятся либо к рыцарям, либо к плутам. При этом рыцари всегда говорят правду, а плуты всегда лгут. Вот еще одна задача о рыцарях и плутах, относящаяся к метаголоволомкам.
Один мудрец как-то раз посетил этот остров, где повстречал двух его жителей, А и В. Мудрец спросил А: «Вы оба рыцари?» А ответил ему «да» или «нет». Мудрец поразмышлял некоторое время, но потом понял, что у него не хватает сведений, чтобы определить, к какому же типу они относятся. Тогда мудрец задал А еще один вопрос: «Вы оба одного типа?» (Слова «одного типа» означают, что они либо оба рыцари, либо оба плуты.) А ответил «да» или «нет», и тут до мудреца сразу дошло, к какому типу относится каждый из островитян.
К какому типу принадлежат А и В?
4. Рыцари, плуты и нормальные люди.
На другом острове, где живут рыцари, плуты и нормальные люди, рыцари всегда говорят только правду, плуты всегда лгут, а люди, которых принято называть нормальными, в одних случаях лгут, а в других высказывают правду.
Однажды я посетил этот остров и встретил двух его обитателей, А и В. Еще раньше мне было известно, что один из них рыцарь, а другой — нормальный человек, однако я не знал, кто же именно. Я спросил А, является ли В нормальным человеком, на что А ответил мне вполне определенно. Тут я сразу понял, кем являются А и В.
Итак, кто же из этих двух обитателей острова нормальный человек?
6. Кто шпион?
Ну вот, мы и добрались до куда более хитрой метаголоволомки!
В одном суде проходило разбирательство по делу трех обвиняемых: А, В и С. К началу слушания удалось выяснить, что один из этой троицы был рыцарем (он всегда говорил только правду), другой — плутом (этот всегда лгал), а третий был шпионом, который оказался нормальным человеком (то есть иногда он лгал, а иногда говорил правду). Целью разбирательства было выявить среди них шпиона.
Поначалу слово предоставили обвиняемому А. Он то ли сообщил, что С — плут, то ли заявил, что С — шпион (точнее нам не известно). Потом предложили высказаться подсудимому В, который то ли утверждал, что А — рыцарь, то ли сказал, что А — плут, то ли заявил, что А — шпион, — точнее выяснить нам опять не удалось. Наконец, когда слово предоставили обвиняемому С, тот то ли сообщил, что В — рыцарь, то ли утверждал, что В — плут, то ли заявил, что В — шпион. Судья разобрался, кто же из них шпион, и вынес справедливый приговор.
Об этой истории как-то рассказали одному логику, который, поразмыслив, в конце концов заявил: «У меня недостаточно информации, чтобы выяснить, кто же из обвиняемых шпион». Тогда логику сообщили, что именно сказал А, после чего он вычислил, кто шпион.
Кто же из обвиняемых является шпионом — А, В или С?
Решения
1. Если бы второй близнец также ответил «да», то судья, очевидно, не смог бы узнать, кто из них Джон. Поэтому ясно, что второй близнец должен был ответить «нет». Это означает, что либо оба брата говорили правду, либо они оба лгали. Однако они не могли говорить правду одновременно, поскольку, согласно условию задачи, по крайней мере один из них всегда лжет.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Подведем итоги: то, что мой первый приятель не сумел решить задачу, исключает из рассмотрения случай (3), а то, что ее не смог решить второй приятель, отбрасывает случай (2). Таким образом, нам остается только вариант (3), а именно что обитательница острова принадлежала к ночному типу и спала.
Эпилог. В начале этой главы я упоминал, будто бы весь этот остров мне приснился. Вместе с тем, если бы такого рода остров существовал на самом деле, то, значит, мне приснились бы истинные события. Поэтому, если бы я оказался одним из его обитателей, то меня следовало бы отнести к ночному типу.
Метаголоволомки
Последние две головоломки предыдущей главы (не считая эпилога) — образцы восхитительного класса задачек, которые мне хочется назвать метаголоволомками, или головоломками о головоломках. Например, нам предлагают головоломку без достаточного количества исходных данных, необходимых для ее решения, а потом сообщают, что кто-то еще либо смог, либо не смог решить эту задачу, воспользовавшись некоторой дополнительной информацией, но не всегда говорят, что же это была за информация. Суть, однако, в том, что мы все же получаем некую частичную информацию, которая в конце концов и позволяет нам найти решение задачи. Задачи этого жанра, к сожалению, редко встречаются в книгах. Ниже предлагаются пять таких головоломок — сначала совсем легкие, потом посложнее, а последняя венчает и эту главу, и предыдущие.
1. Дело Джона.
Как-то раз шло судебное расследование по делу двух братьев-близнецов. Было известно, что по крайней мере один из них никогда не говорил правду, хотя и не ясно, кто же именно. Одного из братьев звали Джон — именно он и совершил преступление. (При этом вовсе не обязательно, чтобы Джон был тем из близнецов, который всегда лгал.) Цель расследования заключалась в том, чтобы выяснить, кого же из братьев зовут Джон.
— Вы — Джон? — спросил судья одного из близнецов.
— Да, я Джон, — последовал ответ.
— А вы — Джон? — спросил судья второго брата.
Второй близнец ему ответил вполне определенно (либо «да», либо «нет»), и тут судья сразу догадался, кто из них Джон.
Был Джон первым или вторым из близнецов?
2. Трансильванская метаголоволомка.
Как мы уже знаем из гл. 4, все жители Трансильвании делятся на 4 типа:
1) люди в здравом уме;
2) люди, лишившиеся рассудка;
3) упыри, находящиеся в здравом уме;
4) упыри, лишившиеся рассудка.
Люди в здравом уме высказывают только истину (их утверждения всегда правильны и сами они честны). Люди, лишившиеся рассудка, всегда лгут (в силу собственных заблуждений, но отнюдь не умышленно). Упыри в здравом уме также всегда лгут (в силу своей природы, а не по заблуждению). Упыри, лишившиеся рассудка, всегда говорят правду (они убеждены в том, что их утверждения ложны, но умышленно лгут).
Так вот однажды три логика делились своими впечатлениями о поездках в Трансильванию, которые им пришлось в разное время совершить.
— Когда я там был, — сказал первый логик, — я встретил одного трансильванца, которого звали Айк. Я спросил его, является ли он человеком в здравом уме.
Айк мне ответил вполне определенно («да» или «нет»), но из его ответа я не сумел понять, к какому же типу он относится.
— Какое странное совпадение, — сказал второй логик я тоже повстречал этого самого Айка во время посещения острова. Я спросил его, является ли он упырем в здравом уме; он ответил мне вполне определенно («да» или «нет»), но я так и не смог сообразить, к какому типу он принадлежит.
— Какое совпадение! — воскликнул третий логик.
— Когда я был на острове, я тоже столкнулся с Айком и спросил его, является ли он упырем, лишившимся рассудка. Он тоже ответил мне вполне определенно («да» или «нет»), однако я, как и вы, не смог установить, кем же он был в действительности.
Находится ли Айк в здравом уме или он лишился рассудка? Человек он или упырь?
3. Метаголоволомка о рыцаре и плуте.
В моей уже упоминавшейся книге «Как же называется эта книга?» приведено множество увлекательных задач об острове, обитатели которого относятся либо к рыцарям, либо к плутам. При этом рыцари всегда говорят правду, а плуты всегда лгут. Вот еще одна задача о рыцарях и плутах, относящаяся к метаголоволомкам.
Один мудрец как-то раз посетил этот остров, где повстречал двух его жителей, А и В. Мудрец спросил А: «Вы оба рыцари?» А ответил ему «да» или «нет». Мудрец поразмышлял некоторое время, но потом понял, что у него не хватает сведений, чтобы определить, к какому же типу они относятся. Тогда мудрец задал А еще один вопрос: «Вы оба одного типа?» (Слова «одного типа» означают, что они либо оба рыцари, либо оба плуты.) А ответил «да» или «нет», и тут до мудреца сразу дошло, к какому типу относится каждый из островитян.
К какому типу принадлежат А и В?
4. Рыцари, плуты и нормальные люди.
На другом острове, где живут рыцари, плуты и нормальные люди, рыцари всегда говорят только правду, плуты всегда лгут, а люди, которых принято называть нормальными, в одних случаях лгут, а в других высказывают правду.
Однажды я посетил этот остров и встретил двух его обитателей, А и В. Еще раньше мне было известно, что один из них рыцарь, а другой — нормальный человек, однако я не знал, кто же именно. Я спросил А, является ли В нормальным человеком, на что А ответил мне вполне определенно. Тут я сразу понял, кем являются А и В.
Итак, кто же из этих двух обитателей острова нормальный человек?
6. Кто шпион?
Ну вот, мы и добрались до куда более хитрой метаголоволомки!
В одном суде проходило разбирательство по делу трех обвиняемых: А, В и С. К началу слушания удалось выяснить, что один из этой троицы был рыцарем (он всегда говорил только правду), другой — плутом (этот всегда лгал), а третий был шпионом, который оказался нормальным человеком (то есть иногда он лгал, а иногда говорил правду). Целью разбирательства было выявить среди них шпиона.
Поначалу слово предоставили обвиняемому А. Он то ли сообщил, что С — плут, то ли заявил, что С — шпион (точнее нам не известно). Потом предложили высказаться подсудимому В, который то ли утверждал, что А — рыцарь, то ли сказал, что А — плут, то ли заявил, что А — шпион, — точнее выяснить нам опять не удалось. Наконец, когда слово предоставили обвиняемому С, тот то ли сообщил, что В — рыцарь, то ли утверждал, что В — плут, то ли заявил, что В — шпион. Судья разобрался, кто же из них шпион, и вынес справедливый приговор.
Об этой истории как-то рассказали одному логику, который, поразмыслив, в конце концов заявил: «У меня недостаточно информации, чтобы выяснить, кто же из обвиняемых шпион». Тогда логику сообщили, что именно сказал А, после чего он вычислил, кто шпион.
Кто же из обвиняемых является шпионом — А, В или С?
Решения
1. Если бы второй близнец также ответил «да», то судья, очевидно, не смог бы узнать, кто из них Джон. Поэтому ясно, что второй близнец должен был ответить «нет». Это означает, что либо оба брата говорили правду, либо они оба лгали. Однако они не могли говорить правду одновременно, поскольку, согласно условию задачи, по крайней мере один из них всегда лжет.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52