https://www.dushevoi.ru/products/kuhonnye-mojki/iz-nerzhavejki/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Этот метод настолько точный, что позволяет регистрировать изменения, происходящие при нажатии пальцем на гранитную плиту, нашел впоследствии практическое применение в области материаловедения [8].
Фотографическая память
В 1972 году сотрудники Гарвардского университета Дэниел Поллен и Майкл Трактенберг, специализирующиеся на исследованиях зрительного восприятия, выдвинули гипотезу, согласно которой голографическая теория мозга может объяснить существование у некоторых людей фотографической памяти (известной также как «эйдетическая»). Ее обладателю обычно требуется всего несколько мгновений для сканирования сцены, которую он желает запомнить. Если он хочет воссоздать запечатленную в памяти ситуацию, он «проецирует» ее ментальное изображение на экран перед открытыми или закрытыми глазами — экран реальный или воображаемый. Изучая некую Элизабет, профессора истории искусств Гарвардского университета, обладающую этими уникальными способностями, Поллен и Трактенберг обнаружили, что при чтении ментально проецируемого образа страницы из гетевского «Фауста» ее глаза двигались так, будто она читала настоящую страницу.
Заметив, что при уменьшении фрагмента голографической пленки записанный на нем образ не становится более расплывчатым, Поллен и Трактенберг предположили, что некоторые люди имеют особо рельефную память благодаря доступу к очень большим областям их голографической памяти. С другой стороны, большинство из нас, по-видимому, обладает гораздо менее рельефной памятью из-за ограниченного доступа к участкам голографической памяти [9].
Передача навыков
Прибрам уверен в том, что голографическая модель также проливает свет на нашу способность передавать навыки от одной части тела к другой. Отложите на минуту книгу, которую вы сейчас читаете, и попробуйте выписать свое имя в воздухе с помощью левого локтя. Вы, наверное, обнаружите, что это довольно просто сделать, хотя, скорее всего, вы этим никогда раньше не занимались. Для классической науки такая способность загадочна, так как считается, что различные области мозга (например, та часть, которая управляет движениями локтя) «жестко программируемы», то есть способны выполнять задачи только после того, как повторное обучение вызовет соответствующие соединения нервных клеток мозга. Прибрам замечает, что эту проблему можно разрешить, если допустить, что мозг преобразовывает все содержимое памяти, включая такие навыки, как письмо, в язык интерференционных волновых форм. Такой мозг был бы гораздо более оперативным и мог бы переносить записанную информацию из одного места в другое подобно тому, как из одной тональности в другую транспонирует мелодию умелый пианист.
Тот же механизм мог бы объяснить, каким образом мы узнаем знакомое лицо, независимо от того, под каким углом мы видим его. То есть как только мозг запомнил лицо (или любой другой объект) и преобразовал его в язык волновых форм, он может буквально перевернуть эту внутреннюю голограмму для того, чтобы изучить ее под желаемым углом.
Фантомные боли, или как мы контролируем внешний мир
Большинству из нас ясно, что чувство любви, голода, ярости и т. п. — это внутренняя реальность, в то время как звуки, солнечный свет, запах свежевыпеченного хлеба и т. п. — это реальность внешняя. И все же нет полной ясности в том, как мозгу удается проводить различие между внутренним и внешним. Например, Прибрам отмечает, что когда мы смотрим на человека, его образ в действительности находится на поверхности сетчатки нашего глаза. Однако мы не воспринимаем человека как образ на сетчатке. Мы воспринимаем его как некий «внешний» образ. Сходным образом, когда, скажем, ушиблен палец, мы испытываем в нем боль. Но боль на самом деле не в пальце. Фактически она представляет собою некий нейрофизиологический процесс, протекающий где-то в нашем мозгу. Каким образом наш мозг умудряется обрабатывать все множество нейрофизиологических процессов, проявляющихся в виде опыта и протекающих внутри мозга, создавая при этом впечатление, что часть из них — внутренние, а часть — внешние объекты, выходящие за пределы нашего «серого вещества»?
Способность создавать иллюзию того, что вещи находятся там, где их нет, и есть главное свойство голограммы. Голограмма имеет видимую пространственную протяженность, но если провести рукой сквозь нее, вы ничего не обнаружите. Несмотря на свидетельство ваших органов чувств, никакой прибор не обнаружит присутствия энергетической аномалии или материи на месте голограммы. Это происходит потому, что голограмма — это виртуальный образ — образ, возникающий там, где его нет, и обладающий не большей глубиной, чем ваше «трехмерное» отражение в зеркале. Подобно тому как образ в зеркале расположен на плоскости амальгамы, фактическое нахождение голограммы всегда будет на фотоэмульсии, расположенной на поверхности записывающей пленки.
Доказательство того, что мозг способен создавать иллюзию протекания внутренних процессов вне тела, в дальнейшем было получено Георгом фон Бекеши, нобелевским лауреатом в области физиологии. В ряде экспериментов, проведенных в конце 60-х годов со слепыми перципиентами, Бекеши располагал вибраторы у них на коленях, затем изменял уровень вибраций. С помощью такого метода ему удалось сделать так, что источник вибраций «перепрыгивал» с одного колена на другое. Более того, он обнаружил, что может вызвать у своих подопытных ощущение вибрации в пространстве между коленями. Другими словами, он показал, что люди способны ощущать предметы в пространстве, не имея для этого сенсорных рецепторов [10]. По мнению Прибрама, работа Бекеши согласуется с голографической моделью и проливает дополнительный свет на то, как интерферирующие волновые фронты — или, в случае Бекеши, интерферирующие источники механической вибрации — помогают мозгу локализовать свое восприятие вне физических границ тела. Он полагает, что этот процесс может также объяснить фантомные боли, то есть ощущение присутствия ампутированной руки или ноги у некоторых людей. Эти люди часто отмечают странные, вполне реалистические боли, покалывания и зуд на месте ампутированных конечностей, что может быть объяснено голографической памятью конечности, записанной в интерференционной картине мозга.
Экспериментальная проверка топографического мозга
Параллели между работой мозга и голограммами захватили Прибрама, но он понимал, что его теория ничего не значит без солидной экспериментальной проверки. Одним из исследователей, проведших такую проверку, был биолог Пол Питш из Индианского университета. Интересно, что Питш сначала был ярым противником теории Прибрама. В частности, он очень скептически относился к заявлению Прибрама о том, что память не локализована в мозгу.
Чтобы доказать ошибочность воззрений Прибрама, Питш придумал ряд экспериментов, причем в качестве подопытных он выбрал саламандр. В ранних экспериментах он обнаружил, что удаление мозга не убивает саламандру, а только приводит ее в состояние ступора. Как только мозг возвращается к ней, ее поведение полностью восстанавливается.
Питш рассуждал так: если поведение саламандры в процессе питания не обусловлено локализацией соответствующих функций в мозге, то неважно, каким образом мозг располагается у нее в голове.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
 зеркало в ванную на заказ в Москве 

 Венис Deli