https://www.dushevoi.ru/products/dushevye-kabiny/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Они представляют собой простое и мощное доказательство, что законы природы позволяют маленьким группам атомов вести себя как управляемым машинам, способным строить другие наномашины. Однако вопреки тому, что они в основе напоминают рибосомы, ассемблеры будут отличаться от всего, что находится в клетках; хотя они состоят в обычных движениях молекул и реакциях, то, что они делают, будет иметь новые результаты. Например, ни одна клетка не производит алмазного волокна.
Мысль, что новые виды наномашин дадут новые полезные способности, может казаться потрясающей: за все миллиарды лет развития жизнь в основе всегда полагалась только на белковые машины. Но говорит ли это о том, что усовершенствования были невозможны? Эволюция идёт небольшими изменениями, и эволюция ДНК не может легко заменить ДНК. Так как система ДНК-РНК-рибосома специализирована для построения белков, жизнь не имела никакой реальной возможности развить альтернативный вариант. Любой производственный менеджер хорошо может оценить причины этого; жизнь - больше чем фабрика, она не может себе позволить прекратить деятельность, чтобы заменить свои системы на новые.
Улучшенные молекулярные машины должны нас удивлять не больше, чем сплав стали, который в десять раз прочнее кости, или медные провода, передающие сигналы в миллион раз быстрее нервов. Автомобили обгоняют гепардов, реактивные самолеты летают быстрее соколов, и компьютеры уже считают быстрее самых талантливых из людей. Будущее даст новые примеры улучшений в биологической эволюции, из которых второе поколение наномашин будет лишь одним.
В физических терминах, достаточно ясно, почему усовершенствованные ассемблеры будут способны делать больше чем существующие белковые машины. Они будут программироваться подобно рибосомам, но они будут способны использовать более широкий диапазон инструментов чем все ферменты в клетке вместе взятые. Поскольку они будут сделаны из материалов намного более прочных, твёрдых и устойчивых, чем белки, они будут способны развивать большие мощности, двигаться с большей точностью, и выносить более суровые условия. Подобно промышленным манипуляторам, но в отличие от чего-либо в живой клетке, они будут способны вращаться и двигать молекулы в трёх измерениях под программным управлением, делая возможным точную сборку сложных объектов. Эти преимущества будут давать им возможность собирать намного более широкий спектр молекулярных структур, чем это делали живые клетки.
Не имеет ли жизнь в себе нечто особое сверхъестественное, без чего молекулярные машины не будут работать?
Можно было бы сомневаться, что искусственные наномашины могли бы даже приблизиться к способностям наномашин в клетке, если бы была причина думать, что в клетках есть нечто сверхъестественное, что заставляет их работать. Эта идея называется «витализм». Биологи отказались от неё потому что они нашли химические и физические объяснения для каждого уже изученного аспекта живой клетки, включая движение, рост и воспроизводство. Действительно, это знание является самой основой биотехнологии.
Наномашины, плавающие в стерильных испытательных пробирках вне клеток, заставили выполнять все основные виды действий, которые они выполняют внутри живых клеток. Начиная с химических веществ, которые могут быть получены из дыма, биохимики построили работающие белковые машины без помощи клеток. Р.Б. Меррифилд, например, использовал химические приёмы для сборки простых аминокислот в рибонуклеазу поджелудочной железы бычка, комплекс ферментов, который разбирает на части молекулы РНК. Жизнь специфична по структуре, по поведению, а также по тому, что она чувствует изнутри по поводу того, что она жива, но законы природы, которые управляют механизмами жизни, также управляют всей остальной вселенной.
Доказательства реализуемости ассемблеров и других наномашин могут казаться обоснованным, но почему бы просто не подождать и не посмотреть, действительно ли они могут быть разработаны?
Чистое любопытство кажется причиной, достаточной, чтобы исследовать возможности, открытые нанотехнологией, но есть более сильные причины. Эти достижения охватят мир в пределах от десяти до пятидесяти лет, то есть в пределах сроков жизни наших собственных или членов наших семей. Что более существенно, заключения следующей главы подсказывают, что политика «подождём-посмотрим» была бы слишком дорогой: она бы стоила миллионы жизней, и, возможно, конец жизни на Земле.
Является ли доказательство реализуемости нанотехнологии и ассемблеров достаточно обоснованными, чтобы быть принятыми серьезно? По-видимому это так, поскольку суть доказательства опирается на два известных факта науки и конструирования. Они следующие: (1) что существующие молекулярные машины служат целому ряду простых функций, и (2) что части, служащие этим простым функциям, могут быть скомбинированы так, чтобы строить сложные машины. Поскольку химические реакции могут связывать атомы различным образом, и поскольку молекулярные машины могут направлять химические реакции в соответствии с программными инструкциями, ассемблеры определённо реализуемы.
Нанокомпьютеры
Ассемблеры принесут одно крупное достижение очевидной и фундаментальной важности: инженеры будут их использовать, чтобы сократить размер и стоимость микросхем компьютера и ускорить их функционирование на много порядков.
С сегодняшней балк-технологией инженеры делают схемы на кремниевых чипах, обстреливая их атомами и фотонами, но схемы остаются плоскими и неизбежны дефекты молекулярного масштаба. С ассемблерами, однако, инженеры будут строить схемы в трёх измерениях и строить с точностью до атома. Точные ограничения электронной технологии сегодня остаются неопределёнными, поскольку квантовое поведение электронов в сложных сетях крошечных структур представляет собой сложные проблемы, некоторые из них проистекают напрямую из принципа неопределённости. Но где бы ни были ограничения, однако, они будут достигнуты с помощью ассемблеров.
Самые быстрые компьютеры будут использовать электронные эффекты, но самые маленькие могут не использовать. Это может казаться странным, однако сущность вычисления не имеет никакого отношения к электронике. Цифровой компьютер - собрание выключателей, способных включать и выключать друг друга. Его переключатели начинают в одном положении (возможно, представляющем собой 2+2), далее переключают друг друга в новое положение (представляющем собой 4), и т. д. Такие схемы могут отображать почти всё что угодно. Инженеры строят компьютеры из крошечных электронных переключателей, связанных проводами просто потому что механические переключатели, связанные палочками или ниточками были бы сегодня большими, медленными, ненадёжными и дорогими.
Идея относительно полностью механического компьютера вряд ли нова. В Англии в течение середины 1800-х, Чарльз Баббаг изобрел механический компьютер, построенный из медных механических частей; его сотрудница Августа Ада, графиня лавеласов, изобрела программирование компьютера. Бесконечное перепроектирование машины Баббагом, проблемы с правильным изготовлением, противодействие критиков, контролирующих бюджет (некоторые сомневались в самой полезности компьютеров!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
 https://sdvk.ru/Sanfayans/Unitazi/Uglovye/ 

 плитка испания салони