Технические методы математической логики, которые разработаны в этой книге, мне представляются весьма мощными и способными обеспечить новый инструмент для обсуждения многих проблем, которые до сих пор оставались предметом философской неопределенности. Книга «Понятие природы и принципы познания природы» Уайтхеда может служить иллюстрацией к тому, что я имею в виду.
Когда чистая математика строится как дедуктивная система, то есть как множество всех тех утверждений, которые могут быть выведены из заданных посылок, тогда становится очевидным, что если мы убеждены в истинности чистой математики, то не потому лишь, что убеждены в истинности множества посылок. Некоторые из посылок являются гораздо менее очевидными, чем их следствия, и мы в них убеждены главным образом из-за их следствий. Это происходит всегда, когда наука строится как дедуктивная система. Не самые простые в логическом отношении, а потому наиболее очевидные утверждения системы составляют основную часть наших доводов для веры в систему. Для эмпирических наук это очевидно. Электродинамика, например, может быть сконцентрирована в уравнениях Максвелла, но в эти уравнения мы верим потому, что существуют эмпирические истины для некоторых их логических следствий. Точно то же самое имеет место в области чистой логики. Первым принципам логики – по крайней мере некоторым из них – мы верим не по непосредственной их оценке, а на основании их следствий. Эпистемологический вопрос «Почему я убежден в этом множестве утверждений», совершенно отличается от логического вопроса – «Какова наименьшая и логически простейшая группа утверждений, из которой может быть выведено это множество утверждений?» Наши доводы для веры в логику и чистую математику являются отчасти лишь индуктивными и вероятными, вопреки тому факту, что в своем логическом порядке утверждения логики и чистой математики следуют из посылок логики посредством чистой дедукции. Я считаю этот пункт важным, поскольку ошибки обязаны своим возникновением ассимиляции логического порядка эпистемологическим, а также и, наоборот, ассимиляции эпистемологического порядка логическим. Единственный способ, посредством которого деятельность математической логики бросает свет на истинность или ложность математики, связан с опровержением предполагаемых антиномий. Это показывает, что математика может быть истинной. Но показать, что математика является истинной, потребует других методов и других рассуждений.
Один из важных эвристических принципов, который Уайтхед и я нашли путем опыта для применения в математической логике и тем самым в других областях, представляет собой форму бритвы Оккама. Когда некоторое множество предполагаемых сущностей (entities) имеет чисто логические свойства, то оказывается, что в значительном большинстве случаев эти предполагаемые сущности могут быть заменены чисто логическими структурами, построенными из сущностей, которые не имеют таких чистых свойств. В подобном случае при интерпретации основной части утверждений, о которых до сих пор думали как: о предполагаемых объектах, мы можем заменить логические структуры, не изменяя в чем-либо детали этой части рассматриваемых утверждений. Это дает экономию, потому что сущности с чисто логическими свойствами всегда выводятся, и если утверждение, в котором они встречаются, может быть интерпретировано без этого вывода, тогда основание для вывода отпадает и наша основная часть утверждений не будет нуждаться в сомнительном шаге. Этот принцип может быть сформулирован в следующей форме «Всюду, где возможно, заменяйте конструкциями из известных сущностей выводы к неизвестным сущностям».
Использование этого принципа весьма разнообразно, но непонятно в деталях для тех, кто не знает математическую логику. Первый раз, когда я с ним встретился, я назвал его «принципом абстракции» или «принципом освобождения от абстракции». (Имеется в виду «Наше познание внешнего мира как поле для научного метода в философии» (1914) – прим. ред.). Этот принцип применим в случае любого симметричного и транзитивного отношения, такого, как равенство Мы склонны заключить, что подобные отношения возникают из наличия некоторого общего качества. Это может быть или не быть истинным, вероятно, оно истинно в одних случаях и не истинно в других. Однако всем формальным целям общего качества может служить членство в группе терминов, имеющих указанное отношение к данному термину. Возьмем, например, величину. Предположим, что мы имеем группу стержней одинаковой длины. Нетрудно предположить, что существует некоторое качество, названное их длиной, которое является для них общим. Но все утверждения, в которых это предполагаемое качество встречается, будут сохранять свое истинностное значение неизменным, если вместо «длины стержня х» мы возьмем членство группы всех тех стержней, которые имеют ту же длину, «что и х» В различных специальных случаях, например, при определении действительных чисел, возможна более простая конструкция.
Самый важный пример этого принципа – определение Фреге кардинального числа данного множества элементов как класса всех множеств, которые «подобны» данному множеству, где два множества «подобны:», когда существует взаимно-однозначное соответствие, чьей областью служит одно множество, а обратной областью – другое множество. Таким образом, кардинальное число есть класс всех тех классов, которые подобны данному классу. Это определение оставляет неизменным истинностные значения всех утверждений, в которых встречаются кардинальные числа, и избегает заключений к множеству объектов, называемых кардинальными числами, которые никогда не были необходимы, кроме как для понимания арифметики, а теперь больше не нужны и для такой цели.
Возможно, даже более важным является тот факт, что подобными методами можно избавиться от самих классов. Математика полна утверждений, которые, кажется, требуют, чтобы такие классы или агрегаты должны были быть в некотором смысле отдельными сущностями, например, утверждение «число комбинаций из п вещей любого числа есть 2». Поскольку 2" всегда больше, чем п, то это утверждение приводит к трудностям, если допускаются классы, потому что число классов сущностей в универсуме больше, чем число сущностей в нем, которые будут лишними, если классы окажутся среди сущностей. К счастью, все утверждения, в которых появляются классы, могут интерпретироваться без предположения, что существуют классы. Это, возможно, наиболее важное из всех применений нашего принципа. (См. "Principia Mathematical, 20).
Другой важный пример относится к тому, что я называю «определенными дескрипциями», то есть к таким фразам, как «четно простое», «нынешний король Англии», «нынешний король Франции». Всегда было трудно интерпретировать такие утверждения, как «нынешний король Франции не существует». Трудность возникает здесь благодаря тому, что «нынешний король Франции» является субъектом этого утверждения, который делает необходимым предположить его существование, хотя он и не существует. Но эта трудность приписывает существование даже «круглому квадрату» или «четному простому числу, большему, чем 2» Фактически получается, что «круглый квадрат не существует» так же верно, как и «нынешний король Франции не существует».
1 2 3 4 5 6 7 8
Когда чистая математика строится как дедуктивная система, то есть как множество всех тех утверждений, которые могут быть выведены из заданных посылок, тогда становится очевидным, что если мы убеждены в истинности чистой математики, то не потому лишь, что убеждены в истинности множества посылок. Некоторые из посылок являются гораздо менее очевидными, чем их следствия, и мы в них убеждены главным образом из-за их следствий. Это происходит всегда, когда наука строится как дедуктивная система. Не самые простые в логическом отношении, а потому наиболее очевидные утверждения системы составляют основную часть наших доводов для веры в систему. Для эмпирических наук это очевидно. Электродинамика, например, может быть сконцентрирована в уравнениях Максвелла, но в эти уравнения мы верим потому, что существуют эмпирические истины для некоторых их логических следствий. Точно то же самое имеет место в области чистой логики. Первым принципам логики – по крайней мере некоторым из них – мы верим не по непосредственной их оценке, а на основании их следствий. Эпистемологический вопрос «Почему я убежден в этом множестве утверждений», совершенно отличается от логического вопроса – «Какова наименьшая и логически простейшая группа утверждений, из которой может быть выведено это множество утверждений?» Наши доводы для веры в логику и чистую математику являются отчасти лишь индуктивными и вероятными, вопреки тому факту, что в своем логическом порядке утверждения логики и чистой математики следуют из посылок логики посредством чистой дедукции. Я считаю этот пункт важным, поскольку ошибки обязаны своим возникновением ассимиляции логического порядка эпистемологическим, а также и, наоборот, ассимиляции эпистемологического порядка логическим. Единственный способ, посредством которого деятельность математической логики бросает свет на истинность или ложность математики, связан с опровержением предполагаемых антиномий. Это показывает, что математика может быть истинной. Но показать, что математика является истинной, потребует других методов и других рассуждений.
Один из важных эвристических принципов, который Уайтхед и я нашли путем опыта для применения в математической логике и тем самым в других областях, представляет собой форму бритвы Оккама. Когда некоторое множество предполагаемых сущностей (entities) имеет чисто логические свойства, то оказывается, что в значительном большинстве случаев эти предполагаемые сущности могут быть заменены чисто логическими структурами, построенными из сущностей, которые не имеют таких чистых свойств. В подобном случае при интерпретации основной части утверждений, о которых до сих пор думали как: о предполагаемых объектах, мы можем заменить логические структуры, не изменяя в чем-либо детали этой части рассматриваемых утверждений. Это дает экономию, потому что сущности с чисто логическими свойствами всегда выводятся, и если утверждение, в котором они встречаются, может быть интерпретировано без этого вывода, тогда основание для вывода отпадает и наша основная часть утверждений не будет нуждаться в сомнительном шаге. Этот принцип может быть сформулирован в следующей форме «Всюду, где возможно, заменяйте конструкциями из известных сущностей выводы к неизвестным сущностям».
Использование этого принципа весьма разнообразно, но непонятно в деталях для тех, кто не знает математическую логику. Первый раз, когда я с ним встретился, я назвал его «принципом абстракции» или «принципом освобождения от абстракции». (Имеется в виду «Наше познание внешнего мира как поле для научного метода в философии» (1914) – прим. ред.). Этот принцип применим в случае любого симметричного и транзитивного отношения, такого, как равенство Мы склонны заключить, что подобные отношения возникают из наличия некоторого общего качества. Это может быть или не быть истинным, вероятно, оно истинно в одних случаях и не истинно в других. Однако всем формальным целям общего качества может служить членство в группе терминов, имеющих указанное отношение к данному термину. Возьмем, например, величину. Предположим, что мы имеем группу стержней одинаковой длины. Нетрудно предположить, что существует некоторое качество, названное их длиной, которое является для них общим. Но все утверждения, в которых это предполагаемое качество встречается, будут сохранять свое истинностное значение неизменным, если вместо «длины стержня х» мы возьмем членство группы всех тех стержней, которые имеют ту же длину, «что и х» В различных специальных случаях, например, при определении действительных чисел, возможна более простая конструкция.
Самый важный пример этого принципа – определение Фреге кардинального числа данного множества элементов как класса всех множеств, которые «подобны» данному множеству, где два множества «подобны:», когда существует взаимно-однозначное соответствие, чьей областью служит одно множество, а обратной областью – другое множество. Таким образом, кардинальное число есть класс всех тех классов, которые подобны данному классу. Это определение оставляет неизменным истинностные значения всех утверждений, в которых встречаются кардинальные числа, и избегает заключений к множеству объектов, называемых кардинальными числами, которые никогда не были необходимы, кроме как для понимания арифметики, а теперь больше не нужны и для такой цели.
Возможно, даже более важным является тот факт, что подобными методами можно избавиться от самих классов. Математика полна утверждений, которые, кажется, требуют, чтобы такие классы или агрегаты должны были быть в некотором смысле отдельными сущностями, например, утверждение «число комбинаций из п вещей любого числа есть 2». Поскольку 2" всегда больше, чем п, то это утверждение приводит к трудностям, если допускаются классы, потому что число классов сущностей в универсуме больше, чем число сущностей в нем, которые будут лишними, если классы окажутся среди сущностей. К счастью, все утверждения, в которых появляются классы, могут интерпретироваться без предположения, что существуют классы. Это, возможно, наиболее важное из всех применений нашего принципа. (См. "Principia Mathematical, 20).
Другой важный пример относится к тому, что я называю «определенными дескрипциями», то есть к таким фразам, как «четно простое», «нынешний король Англии», «нынешний король Франции». Всегда было трудно интерпретировать такие утверждения, как «нынешний король Франции не существует». Трудность возникает здесь благодаря тому, что «нынешний король Франции» является субъектом этого утверждения, который делает необходимым предположить его существование, хотя он и не существует. Но эта трудность приписывает существование даже «круглому квадрату» или «четному простому числу, большему, чем 2» Фактически получается, что «круглый квадрат не существует» так же верно, как и «нынешний король Франции не существует».
1 2 3 4 5 6 7 8