https://www.dushevoi.ru/products/kuhonnye-mojki/Granula/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Пространство стало абсолютным, бесконечным, трехмерным, пустым (как, например, в античной атомистике или в ньютоновской физике), независимым от природы вещей вместилищем материальных тел, -- в то время как о протяженности стали больше говорить как о характеристике геометрических и механических объектов. Аналогичным путем шло развитие категории времени. Однако в большинстве случаев (за исключением, разумеется, субъективно-идеалистического подхода) пространство и время оставались твердым оплотом мировоззрения, опирающегося на принцип монистического Всеединства.
Позиция космистской философии по вопросу пространства и времени проста и понятна; она позволяет, исходя из реальной протяженности и длительности, присущей всем без исключения объектам природной и социальной действительности, установить: каким именно образом различные отношения протяженно-длительных вещей и процессов приводят к появлению разнообразных пространственных или временных характеристик, таких как направление, расположение, расстояние, интервал и более общих -- координация, субординация, последовательность, упорядоченность и т.п.
Существует мнение, что протяженность и длительность выражают исключительно метрические свойства пространства и времени и связанны в первую очередь с их количественным аспектом. Чтобы разобраться, насколько данное утверждение правильно, необходимо рассмотреть вопрос об измерении пространственных и временных величин. В повседневной практике человек пользуется понятием пространственности не иначе как выраженным в каком-то измерении. Суть измерения -- в сравнивании; в нем проявляется и объективность измерения, поскольку сравниваться могут лишь реальные объекты, находящиеся в отношениях, какое бы преломление они ни претерпевали, отражаясь в тех или иных понятиях.
Измерение может быть как однопорядковым (например, измерение пространства в единицах протяженности или измерение времени в единицах длительности), так и разнопорядковым (например, объективно понятию скорости соответствует выражение протяженности через длительность)*. Потребности практики обусловило и то, что до XIX в. человечество вполне удовлетворяли три вида пространственных измерений: одномерное (линия), двухмерное (плоскость) и трехмерное (объем). Впоследствии возникла (прежде всего в математике, затем в физике) теория так называемых многомерных пространств.
Объективная природа пространства не меняется в зависимости от того, в скольких измерениях оно будет выражено. Действительная основа линии, площади, объема, а также какого бы то ни было многомерного пространства одна и та же -- реальная протяженность вещей и процессов материального мира. Возможность же измерения пространства-времени каким угодно образом и соответствующего выражения любым числом измерений обусловлена конкретными зависимостями между внутренними и внешними материальными отношениями, в которых могут находиться реальные объекты, обладающие пространственностью и временностью. Стандартная буханка хлеба имеет около 20 см в длину, примерно 10 см в ширину и столько же в высоту -- всего 2000 см3. Таково ее пространственное бытие в трех измерениях. (Заметим в скобках, что длительность временного существования обычной буханки хлеба как пищевого продукта -- около суток с момента выпечки до полного съедения. Но для последующего анализа временная координата не потребуется.) Спрашивается: почему пространственный объем буханки (или пространство, ее окружающее) имеет три измерения -- не больше и не меньше? Этот простой вопрос в действительности один из сложнейших в науке, имеет длительную теоретическую судьбу, скрестившую усилия философов, математиков, естествоиспытателей.
Чтобы понять, почему пространство трехмерно, попробуем вначале выяснить, почему расстояния между объектами или длины физических тел принято выражать в одном измерении. Ведь расстояния определяются на поверхности Земли, которая сама по себе объемна. Расстояние между объектами на Земле или в Космосе -- это ведь тоже расстояние между объемными физическими телами. А вот математические точки и линии -- абстракции, в "чистом виде" в природе не встречающиеся. Точку и линию можно получить путем соприкосновения или наложения объемных предметов (линеек, циркулей, карандашей, рейсфедеров, бумаги и т.п.).
Метр как единица длины в первом определении был равен 1?10--7 части четверти длины парижского меридиана (то есть воображаемой линии на поверхности объемного земного шара). В современном определении метр -- длина, равная 1650763,73 длины волны в вакууме излучения, соответствующего переходу между строго определенными уровнями атома криптона 86. Излучение происходит в объемном пространстве между электронами, которые также занимают хотя и невообразимо маленький в сравнении с привычными макроскопическими человеческими мерками, но все-таки объем. Таким образом, реальные вещи, тела, процессы, с которыми сталкивается человек в практической деятельности, объемны. По существу, объемность (или емкость) и представляет собой реальную пространственную протяженность*.
Измерение -- процесс достаточно произвольный. В популярном детском мультфильме длину удава измеряют в попугаях. В повседневном быту тоже допустимо забыть о метрах и измерить длину или площадь в толщине пальцев или ширине ладони, в горстях песка или мешках картофеля. В прошлом вполне обходились частями человеческого тела и отношениями между ними, откуда и пошли все сажени, локти, шаги, футы, дюймы и т.п. Лишь на известном этапе развития науки и техники были введены эталоны, сделавшие устаревшими прежние способы измерений.
В далеком прошлом, на заре математики, практические потребности пастушества и земледелия вывели на первое место измерение длин и расстояний (а не, скажем, объемов и емкостей). Развитие строительной и землемерной практики обусловили переход к измерению углов и поверхностей. Абстрактная геометрическая наука, отражая логику развития практики и производства, двигалась от изучения линии через поверхность -- к объему. Одно измерение прибавлялось к другому, в результате в классической Евклидовой геометрии объем оказался трехмерным (и соответственно плоскость -- двухмерной, а линия -- одномерной).
Однако в повседневной практике долго еще оставались измерения с помощью реальных объемных тел. Так, у древних индийцев одной из наиболее употребительных мелких единиц измерения (причем одновременно -- веса и длины) выступала величина ячменного зерна (привлекались и еще более мелкие, по существу мельчайшие из видимых частицы -- например, пылинка в солнечном луче). Длины измерялись в следующих единицах: восемь ячменных зернышек приравнивались к толщине пальца, четыре пальца -- к объему кулака, а двадцать четыре -- составляли "локоть", четыре локтя -- величину индийского лука и т.д. -вплоть до мили, содержавшей четыре тысячи локтей*. Современные каменщики, как еще строители в Древнем Египте, измеряют толщину кладки в кирпичах (так, толщина стен оценивается в полкирпича, в кирпич, полтора, два и т.д.). И кирпич, и ячменное зерно используются в обоих приведенных случаях, как одномерные (то есть недифференцированные по измерениям) объемы для измерения одномерной же длины, ширины, толщины.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 https://sdvk.ru/Smesiteli/smesitel/Am-Pm/ 

 кухонная плитка