Для меня стало очевидным то, что кто-то в какой-то тайной книге, должно быть, разложил 666 на простые числа, а затем изобрел «противоядие» 888. Поэтому я написал Ли Кэрроллу и спросил у него, знает ли он что-нибудь о значении числа 37 (37 является суммой 1+2+3+4+5+6+7+9 из возрастающей последовательности чисел математики единства). Согласно его источникам, число 37 совершенно не пользовалось популярностью у нумерологов??.
А дальше оказалось, что стандартным математическим и физическим постоянным, включающим в себя 37, во многом присуща числовая симметрия, в которой легко убедиться! И оказалось также, что оно появляется с частотой, доселе неизвестной нумерологам (насколько я, дилетант, понимаю).
Крайон также говорит, что для него важно число 27. Проверьте следующие выражения:
27 / 999 = 1 / 37; 37 / 999 = 1 / 27 и, конечно же, 37? 27 = 999;
9 + 9 + 9 = 27; 1 / 27 = 0,037037037037…; 1 / 37 = 0,027027027…;
27 + 37 = 64 = 82 = 26 = (1 / 125)2;
? = 10? [1 / (?)].
Всю последовательность «тройных чисел» можно представить следующим образом:
111 =37? 3; 222 = 37? 3? 2; 333 = 37? 32; 444 = 37? 3? 22; 555 = 37? 3? 5; 666 = 37? 32? 2;
777 = 37? 3? 7; 888 = 37? 32? 23; 999 = 37? 33.
Если суммировать цифры любого из этих трехразрядных чисел, получим интересные результаты при умножении на 37, например:
4 + 4 + 4 = 12; 12? 37 = 444.
Иными словами, эти числа цикличны! Единственным общим элементом этих тройных чисел является 37! Является ли 37 «мерзостью», упоминаемой в «Откровении Иоанна Богослова»? Или оно указывает на то, что наше общепринятое понимание математики является, так сказать, «мерзостью»? А именно: «не об-ладая достаточной компетентностью и дерзая возвыситься до познания Вселенной, мы стараемся втиснуть Вселенную в рамки наших собственных эгоцентричных и ошибочных схем». Ибо, действительно, ни обще-принятая математика, ни в общепринятая нумерология не приписывают числу 37 никакого значения. О чем повествует библейский рассказ о вавилонской башне, как не о недозволенном восхождении? А что Иисус утверждает о своем праве учить? То, что оно «низошло от Бога»! И Христос возносится только после того, как низошел?!
Особенно удивительно во всем этом то, что эти примеры указывают на логику математики единства и имеют мало смысла с точки зрения философии общепринятой математики. Не могли они также быть «изобретены» их авторами, поскольку логика их моделирования была той же, которой мы до сих пор поль-зуемся в математике! Они веско указывают на реальность «божественного откровения» — когда кто-то запи-сывает что-то, не понимая ничего, кроме того, что «должен это сделать», — или некой формы «знания, от-личного от общепринятого». См. Первое Послание апостола Павла к Коринфянам, 1:22-24.
С «тройными числами» связаны и другие нумерологические закономерности. Все они, помноженные на числа, кратные 18, или на делители этого числа, дают в итоге 1998??. Хотя с точки зрения математики это не является чем-то исключительным, однако, учитывая нумерологический аспект, который кажется весьма существенным, и знаменательные даты в работе Крайона, Ли счел, что мне следует в свою статью включить и эти примеры.
111? 18 = 1998; 222? 9 = 1998; 333? 6 = 1998; 444? 4,5 = 1998; 555? 3,6 = 1998; 666? 3 = 1998;
888? 2,25 = 1998; 999? 2 = 1998
(777 — это исключение: стандартная последовательность, делимая на 7, которая издавна считается изящным математическим курьезом).
Далее я обнаружил, что 888? 2 = 1776. Ли опередил меня и нашел, что 1998 / 1776 = 1,125 (что в ма-тематике единства представляет собой симметрию Единства, Диады и среднего целочисленного от осно-вания десятичного счисления). Эта симметрия 125 в изобилии встречается в общепринятой математи-ке???.
Итак, тайна 666 разгадана? Я думаю, да. Тайна состоит в том, что система нашей математики не от-калибрована, и мы можем ожидать мрачных последствий, если не захотим ее настроить. С другой стороны, если мы просто откалибруем единицы, то вступим в тот «новый золотой век», в котором теология и наука будут в полном согласии, поскольку они обе, в конце концов, будут иметь дело с истиной (истина — это ЕДИНОЕ).
Это подводит нас к следующему пункту. Ли оказал мне честь, еще до выхода книги прислав запись ченнелинга Крайона, в котором говорится, что математика Вселенной основывается на двенадцатиричной системе счисления. Он спросил меня, заслуживает ли доверия такое утверждение с точки зрения математи-ки.
Этот вопрос очень наглядно показывает, какими твердолобыми мы, люди, можем быть. Два года я всматривался в геометрию констант круга, задаваясь вопросом: «Почему круг естественным образом де-лится на шесть частей (шестиугольник?)?» Я располагал математикой единства с «пропущенным целым числом» и всеми составляющими, чтобы сказать: «Ага! Универсальная система счисления должна быть двенадцатиричной (шесть является средним целочисленным и эквивалентом в двенадцатиричной системе пропущенного целого числа нашей десятичной системы). И кроме этих пунктов, существует еще не одно подтверждение. Из пятиугольника вытекает одна удивительная пропорция, которую открыл и продемонст-рировал Евклид. Она называется „золотым сечением“. Это геометрическая константа. Константа — это математическое выражение, которое неизменно и справедливо во всех случаях. Золотое сечение справед-ливо для условий, присущих делению круга, независимо от основания системы счисления, в которой оно описывается арифметически, или от части Вселенной, в которой вы орудуете циркулем. Оно описывает от-ношение сторон и углов пятиугольника (правильного пятистороннего многоугольника) друг к другу и счи-тается самой совершенной из возможных геометрических симметрии.
В области геометрии оно ведет себя точно так же, как выпадающая 8 возрастающей последователь-ности в десятичной системе счисления. Далее, тот факт, что круг на вторичном уровне (первичное деление круга заключается в том, что циркуль, расстояние между ножками которого равняется радиусу окружности, «обходит ее по кругу» ровно шесть раз) естественным образом делится на треугольники (три стороны) и квадраты (четырехсторонние фигуры), показывает, что круг является феноменом, относящимся к двена-дцатиричной системе счисления.
С арифметической точки зрения у золотого сечения также наблюдаются интересные соотношения. Некоторые из них уже хорошо известны, другие же, возможно, будут представлены здесь впервые. Я при-вожу их как «априорное знание», проверенное другими, более сведущими математиками, жившими преж-де.
В арифметике золотое сечение выражается как (+ 1) / 2! Заметьте, что это выражение состоит из Единства, Диады и среднего целочисленного от основания десятичного счисления (5)! Это не случай-ность и не какая-то обособленная симметрия. Можно обнаружить, что присутствие 1,2 и 5 в арифметике очень распространено. Одна из самых широко известных симметрии состоит в том, что «отношение всех чисел ряда Фибоначчи является золотым сечением». Фибоначчи был средневековым математиком, который открыл, что в простых условиях, применимых к числам, присутствуют симметричные модели роста. В классической истории, иллюстрирующей последовательности Фибоначчи, рассказывается о том, как один фермер покупал пару кроликов и подсчитывал, сколько у него их будет, если каждый месяц они будут при-носить крольчат. Он смог вычислить, сколько кроликов появится в каждый конкретный месяц (предпола-гая, что кролики живут вечно)!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
А дальше оказалось, что стандартным математическим и физическим постоянным, включающим в себя 37, во многом присуща числовая симметрия, в которой легко убедиться! И оказалось также, что оно появляется с частотой, доселе неизвестной нумерологам (насколько я, дилетант, понимаю).
Крайон также говорит, что для него важно число 27. Проверьте следующие выражения:
27 / 999 = 1 / 37; 37 / 999 = 1 / 27 и, конечно же, 37? 27 = 999;
9 + 9 + 9 = 27; 1 / 27 = 0,037037037037…; 1 / 37 = 0,027027027…;
27 + 37 = 64 = 82 = 26 = (1 / 125)2;
? = 10? [1 / (?)].
Всю последовательность «тройных чисел» можно представить следующим образом:
111 =37? 3; 222 = 37? 3? 2; 333 = 37? 32; 444 = 37? 3? 22; 555 = 37? 3? 5; 666 = 37? 32? 2;
777 = 37? 3? 7; 888 = 37? 32? 23; 999 = 37? 33.
Если суммировать цифры любого из этих трехразрядных чисел, получим интересные результаты при умножении на 37, например:
4 + 4 + 4 = 12; 12? 37 = 444.
Иными словами, эти числа цикличны! Единственным общим элементом этих тройных чисел является 37! Является ли 37 «мерзостью», упоминаемой в «Откровении Иоанна Богослова»? Или оно указывает на то, что наше общепринятое понимание математики является, так сказать, «мерзостью»? А именно: «не об-ладая достаточной компетентностью и дерзая возвыситься до познания Вселенной, мы стараемся втиснуть Вселенную в рамки наших собственных эгоцентричных и ошибочных схем». Ибо, действительно, ни обще-принятая математика, ни в общепринятая нумерология не приписывают числу 37 никакого значения. О чем повествует библейский рассказ о вавилонской башне, как не о недозволенном восхождении? А что Иисус утверждает о своем праве учить? То, что оно «низошло от Бога»! И Христос возносится только после того, как низошел?!
Особенно удивительно во всем этом то, что эти примеры указывают на логику математики единства и имеют мало смысла с точки зрения философии общепринятой математики. Не могли они также быть «изобретены» их авторами, поскольку логика их моделирования была той же, которой мы до сих пор поль-зуемся в математике! Они веско указывают на реальность «божественного откровения» — когда кто-то запи-сывает что-то, не понимая ничего, кроме того, что «должен это сделать», — или некой формы «знания, от-личного от общепринятого». См. Первое Послание апостола Павла к Коринфянам, 1:22-24.
С «тройными числами» связаны и другие нумерологические закономерности. Все они, помноженные на числа, кратные 18, или на делители этого числа, дают в итоге 1998??. Хотя с точки зрения математики это не является чем-то исключительным, однако, учитывая нумерологический аспект, который кажется весьма существенным, и знаменательные даты в работе Крайона, Ли счел, что мне следует в свою статью включить и эти примеры.
111? 18 = 1998; 222? 9 = 1998; 333? 6 = 1998; 444? 4,5 = 1998; 555? 3,6 = 1998; 666? 3 = 1998;
888? 2,25 = 1998; 999? 2 = 1998
(777 — это исключение: стандартная последовательность, делимая на 7, которая издавна считается изящным математическим курьезом).
Далее я обнаружил, что 888? 2 = 1776. Ли опередил меня и нашел, что 1998 / 1776 = 1,125 (что в ма-тематике единства представляет собой симметрию Единства, Диады и среднего целочисленного от осно-вания десятичного счисления). Эта симметрия 125 в изобилии встречается в общепринятой математи-ке???.
Итак, тайна 666 разгадана? Я думаю, да. Тайна состоит в том, что система нашей математики не от-калибрована, и мы можем ожидать мрачных последствий, если не захотим ее настроить. С другой стороны, если мы просто откалибруем единицы, то вступим в тот «новый золотой век», в котором теология и наука будут в полном согласии, поскольку они обе, в конце концов, будут иметь дело с истиной (истина — это ЕДИНОЕ).
Это подводит нас к следующему пункту. Ли оказал мне честь, еще до выхода книги прислав запись ченнелинга Крайона, в котором говорится, что математика Вселенной основывается на двенадцатиричной системе счисления. Он спросил меня, заслуживает ли доверия такое утверждение с точки зрения математи-ки.
Этот вопрос очень наглядно показывает, какими твердолобыми мы, люди, можем быть. Два года я всматривался в геометрию констант круга, задаваясь вопросом: «Почему круг естественным образом де-лится на шесть частей (шестиугольник?)?» Я располагал математикой единства с «пропущенным целым числом» и всеми составляющими, чтобы сказать: «Ага! Универсальная система счисления должна быть двенадцатиричной (шесть является средним целочисленным и эквивалентом в двенадцатиричной системе пропущенного целого числа нашей десятичной системы). И кроме этих пунктов, существует еще не одно подтверждение. Из пятиугольника вытекает одна удивительная пропорция, которую открыл и продемонст-рировал Евклид. Она называется „золотым сечением“. Это геометрическая константа. Константа — это математическое выражение, которое неизменно и справедливо во всех случаях. Золотое сечение справед-ливо для условий, присущих делению круга, независимо от основания системы счисления, в которой оно описывается арифметически, или от части Вселенной, в которой вы орудуете циркулем. Оно описывает от-ношение сторон и углов пятиугольника (правильного пятистороннего многоугольника) друг к другу и счи-тается самой совершенной из возможных геометрических симметрии.
В области геометрии оно ведет себя точно так же, как выпадающая 8 возрастающей последователь-ности в десятичной системе счисления. Далее, тот факт, что круг на вторичном уровне (первичное деление круга заключается в том, что циркуль, расстояние между ножками которого равняется радиусу окружности, «обходит ее по кругу» ровно шесть раз) естественным образом делится на треугольники (три стороны) и квадраты (четырехсторонние фигуры), показывает, что круг является феноменом, относящимся к двена-дцатиричной системе счисления.
С арифметической точки зрения у золотого сечения также наблюдаются интересные соотношения. Некоторые из них уже хорошо известны, другие же, возможно, будут представлены здесь впервые. Я при-вожу их как «априорное знание», проверенное другими, более сведущими математиками, жившими преж-де.
В арифметике золотое сечение выражается как (+ 1) / 2! Заметьте, что это выражение состоит из Единства, Диады и среднего целочисленного от основания десятичного счисления (5)! Это не случай-ность и не какая-то обособленная симметрия. Можно обнаружить, что присутствие 1,2 и 5 в арифметике очень распространено. Одна из самых широко известных симметрии состоит в том, что «отношение всех чисел ряда Фибоначчи является золотым сечением». Фибоначчи был средневековым математиком, который открыл, что в простых условиях, применимых к числам, присутствуют симметричные модели роста. В классической истории, иллюстрирующей последовательности Фибоначчи, рассказывается о том, как один фермер покупал пару кроликов и подсчитывал, сколько у него их будет, если каждый месяц они будут при-носить крольчат. Он смог вычислить, сколько кроликов появится в каждый конкретный месяц (предпола-гая, что кролики живут вечно)!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78