дешевле брать по акции 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Она сравнима со всей мощностью Днепрогэса.
Митинг шел прямо в машинном зале электростанции. Железобетонный каркас, постоянная крыша, а вот стены пока временные — из профилированных металлических листов. Но тепло и светло: Народу собралось много. Приехали гости, пресса, телевидение и кинохроника. Посредине круглая металлическая площадка размером чуть меньше цирковой арены. Это крышка колодца, в котором работает агрегат. На белом колпаке — выразительная цифра "5" и металлическая пластинка с надписью: «ЛМЗ — гидравлическая турбина, „Электросила“ — генератор трехфазного тока». Табличка означает содружество двух крупнейших ленинградских предприятий.
Строго говоря, пятый агрегат поставили под нагрузку еще вчера. Поэтому сегодня никакой особенной нервозности нет. К тому же ведь и не первый, а пятый…
Глубоко внизу крутится турбина. Ровное гудение доносится из колодца, служит фоном уверенности, солидности, что ли. Ведь десять Волховстроев в одном агрегате!
Советское энергомашиностроение уверенно лидирует в мире, ставя на серийное изготовление уникальные конструкции. Мощность и скорость вращения гидрогенераторов устанавливаются заводами — изготовителями гидротурбин и зависят от напора и расхода воды. Принципиально схема турбины и гидрогенератора за последние годы не изменилась, но каждая новая машина требует решения сложного комплекса технических проблем. Тут и усовершенствование компоновки гидрогенератора, и создание наиболее рациональной системы вентиляции и охлаждения, применение новой изоляции и новых типов обмоток, снижение добавочных потерь в зонах перегрева и многие другие вопросы. Например, одно время было никак не решить вопрос о нагрузке на пяту опорного подшипника-подпятника. Следовало так его сконструировать, чтобы он спокойно нес на себе нагрузку до 3500 тонн. В мире подобных аналогов не имелось. И снова выручила ленинградская «Электросила». В содружестве с инженерами производственного объединения «Уралэлектротяжмаш» был сконструирован оригинальный подпятник, обеспечивший спокойную работу гигантской машины.
Успехи гидрогенераторостроителей привели к тому, что наши заводы не только выполняют заказы по постройке машин на экспорт, но и производят разработку проектов для зарубежных предприятий. Мощное энергомашиностроение — ведущая отрасль советской промышленности.

Термояд
Управляемый термоядерный синтез — одна из ключевых проблем современной физики. А поскольку она тесным образом связана с энергетикой, то естественно предположить, что термоядерный синтез выдвигается на одно из первых мест среди нерешенных проблем НТР.
Ученые занимаются изучением условий управляемого термоядерного синтеза более 30 лет. Преодолено немало трудностей, многое стало понятно. И все-таки даже сегодня, считает академик В.Л. Гинзбург, еще рано говорить о превращении задачи из физической в инженерную.
Но чем же привлекает энергетиков — эта сложная проблема?
Еще в 1939 году немецкий физик X. Бете предположил, что в недрах нашего светила при температуре свыше 10 миллионов градусов ядра легкого водорода — протоны, из которых на 90 процентов состоит Солнце, сливаются, превращаются в ядра гелия и выделяют при этом массу энергии.
Гипотеза пришлась по вкусу физикам-теоретикам и получила широкое распространение. Вспомните знаменитое уравнение Эйнштейна Е = МС2, связывающее энергию — Е с массой — М и скоростью света — С. Если подставить цифры, то получится весьма впечатляющее решение. Грамм солнечного вещества, обращенный в энергию, дает ее столько, сколько мы получаем на Земле, сжигая тысячи тонн (!) первоклассного бензина. Из одного килограмма изотопов водорода выделяется в 10 миллионов раз больше энергии, чем при сжигании одного килограмма угля. И это при нынешнем-то, энергетическом кризисе и растущих ценах на нефть и уголь… Естественно, мысль: «А нельзя ли зажечь солнце на Земле?» — просто не могла не возникнуть у ученых. Дело оставалось за небольшим — получить солнечное вещество и научиться превращать его в энергию,
Если открыть последний энциклопедический словарь, то можно прочесть: «Солнце… раскаленный плазменный шар… Химический состав, определенный из анализа солнечного спектра: водород — около 90%, гелий — 10%, остальные элементы — менее 0, 1% (по числу атомов)». А что такое «плазма»?
Если, услыхав слово «плазма», вы подумаете о чем-то исключительном, то непременно ошибетесь. В состоянии плазмы находится подавляющая часть вещества Вселенной. Тут и звезды, и галактические туманности, межзвездная среда и даже внешняя оболочка нашей собственной земной атмосферы. Не говоря уж о том, что Земля просто купается в плазме в виде солнечного ветра. Правда, искать природную плазму на поверхности нашей планеты — занятие безнадежное. Ее не существует. Но исследователи довольно давно научились получать ее искусственно в лабораториях, свое же название она получила совсем недавно.
Все в тех же 20-х годах нашего века два американских физика Ленгмюр и Tонкс, изучая газовый разряд, назвали его греческим словом «plasma», что означало — ионизованный электрически нейтральный газ, содержащий равное количество положительных и отрицательных зарядов. Этот газ-плазма оказался настолько отличающимся от всех известных физикам состояний вещества, что стал самостоятельным объектом исследования.
Давайте попробуем каким-нибудь способом постепенно разогревать кусок обычного, вполне земного вещества, хоть железку. Сначала она раскалится, засветится. Затем связи в ней ослабнут, и она расплавится. Потом жидкость испарится и перейдет в газ. При дальнейшем нагреве молекулы газа не выдержат и разорвутся на атомы. Еще дальше — газ станет атомарным. А там начнут сдаваться и атомы. Электроны будут отрываться от ядер, и газ начнет переходить в плазму.
Примерно к температуре десять миллионов градусов плазма окажется полностью ионизованной. То есть вещество будет состоять из «голых» ободранных ядер и свободных электронов, которые мечутся в разные стороны, стремясь во что бы то ни стало сбросить возбуждение, отдать сообщенную энергию и обрести, образно говоря, покой.
При ста миллионах градусов частицы плазмы обретают такую скорость, что при встречах ядра могут начать разрушатьея. Здесь мы подошли к границе ядерных превращений.
При миллиарде градусов вещество будет состоять уже только из протонов и электронов. Ядра распадутся. А при температурах более десяти триллионов (10 E13) градусов элементарные частицы получат возможность превращаться одна в другую.
Правда, представить себе все эти градусы довольно трудно. Нужно быть физиком-теоретиком.
Чем ближе знакомились физики с плазмой, тем больше убеждались в ее вздорном характере. Посудите сами: мы говорам, что плазма нейтральна. Но шустрые электроны куда более подвижны, чем массивные ионы, и потому они первыми, норовят удрать из дружного коллектива. Образуются нестабильные электрические поля. Под их влиянием частицы меняют свои направления, путают расчеты, делают поведение сгустка плазмы труднопредсказуемым. Плазма изо всех сил стремится расшириться, коснуться стенок камеры, отдать энергию и… погибнуть.
Просто какая-то страсть к самоубийству.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 сантехника оптом в Москве 

 Керрол Imperia Plus