https://www.dushevoi.ru/brands/strana-belarus/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Птолемей дал для p число 317/120, более точное, чем 31/7, но оно не вошло в употребление, будучи найдено позднее более простого числа Архимеда. В Кулвазутрасе, весьма древнем математическом сочинении индусов, находится решение задачи, обратной К. круга: построить круг, равновеликий данному квадрату; по этому решению радиус искомого круга равен половине стороны квадрата, увеличенной на треть разности между половиной диагонали и половиной стороны данного квадрата. Ариабхатта (500 л. по Р. Хр.) вычислил p = 3,1416; это число точнее, чем приближения Архимеда и даже Птолемея, так как вычислитель, следуя методу Архимеда, дошёл до 384-х угольника. Другой индийский математик Браматупта (VII в.) нашёл, что ; это число, как связанное с десятичной системой счисления, долгое время считалось лучшим приближением и неизменно употреблялось потом всеми арабскими математиками. В китайских книгах найдена величина p = 37/50, которая менее точна, чем число Архимеда. В Европе изыскания К. круга начались лишь с XV в. Кардинал Николай Куза нашёл следующее решение: по данному кругу должно построить другой, диаметр которого равен радиусу данного круга плюс сторона вписанного в него квадрата. Тогда периметр вписанного во второй круг равностороннего треугольника равен окружности данного круга. Легко рассчитать, что это приближение хуже приближения Архимеда. Симон Ван-Эйк в конце XVI в. обнародовал сложное построение, которое даёт для p величину, более точную, чем приближение Архимеда. Чтобы доказать неверность этого построения, другой голландский математик Адриан Мециус занялся изысканием для p величины более точной чем 22/7. Таким образом ошибочное построение Ван-Эйка было поводом к открытию знаменитой и легко запоминаемой дроби 355/113, которая представляет отношение окружности к диаметру с точностью до 0,000001. Не лишнее заметить, что ныне, при помощи теории непрерывных дробей доказано, что при употреблении только трехзначных чисел, никакие два другие числа не могут представить величину p точнее, чем отношение 355:113, найденное Мециусом. Неутомимый вычислитель Романус, применяя способ Архимеда, дошёл до многоугольников о 1073741824 сторонах, т. е. числа сторон, равного 230. Но Лудольф Ван-Цейлен превзошёл его и для p дал число с 35-ю десятичными знаками. Это число, названное «лудольфовым», равно:
3,14159265358979323846264338327960288.
Снеллиус и Гюйгенс в XVII в. указали новые пути, дающие возможность, рассматривая многоугольники с меньшим числом сторон, находить приближения для p гораздо скорее и с большим числом десятичных знаков. Однако, вычислительные приёмы сделались ещё проще с тех пор, как для величины p начали открывать формулы, составленные из бесконечного повторения операций над известными числами. Первая мысль отыскать такие формулы принадлежит Виету; он дал ряд
по которому и вычислил сам величину p до 4-х десятичных знаков. Валлис дал другое замечательное произведение, а Грегори, и, независимо от него Лейбниц открыли ряд:
Оригинальный ряд, откуда получается предыдущий как частный случай, есть arctg где а есть тангенс центрального угла в круге, которого радиус равен единице. На основании этого ряда легко составить и такой:
где а, b, с.... суть тангенсы углов, которых сумма равна 45°. Выбрав а, b, с.... малыми, лёгкими для обработки и удовлетворяющими поставленному условию углами, получаются вообще весьма удобные для вычисления ряды. По этому способу лондонский проф. Мехин в 1706 г. вычислил p с 100 десятичными знаками. Он положил
и , т. е. употребил ряд:
До сих пор это лучшая и удобнейшая формула для приближенного вычисления p. Тем не менее открывают и новые ряды, так лорд Брункер представил p в виде непрерывной дроби:
Много строк, бесконечных произведений и непрерывных дробей, дающих p, открыты знаменитым Эйлером, например:
По разным подобным формулам современные математики вычисляют величину p с гораздо большей степенью приближения, чем прежние. Дазе нашёл 200 цифр, Рихтер 500, а Шанкс даже 700. Однако, такое точное вычисление не имеет ни теоретического интереса ни практического значения. Вообразим шар, которого радиус равен расстоянию Сиpиуca от земли (около 134 биллионов километров) и наполненный микробами так тесно, что в каждом кубическом миллиметре их помещается целый биллион (1012). Вообразим далее, что все эти микробы выровнены на прямой, и расстояние между каждыми двумя соседними равно расстоянию Сириуса от земли. Примем теперь эту прямую за диаметр круга и вычислим длину окружности этого круга при помощи (с 100 десятичными знаками. Полученное число даст длину этой окружности с ошибкою против истины лишь в одну миллионную миллиметра. Упомянем ещё об одном любопытном приёме для приближённого определения p, основанном на совершенно иных началах. Если начертить на полу систему равноотстоящих параллельных и взаимно перпендикулярных прямых, образующих равные квадратики, и бросать на пол иглу, длина которой равна стороне каждого квадратика, то, считая случаи, когда упавшая игла поместится внутри какогонибудь квадратика, не пересекая его сторон, получим, что вероятность этого числа, т. е. отношение числа таких попаданий к общему числу бросаний, равна p-3. Проф. Вольф в Цюрихе, предложивший этот способ, бросал иглу 10000 раз и получил p с тремя верными десятичными знаками. В заключение перечислим учёных, которым наука обязана объяснением невозможности К. круга. Ламберт в 1761 г. доказал, что p не есть рациональное число и не есть корень из рационального числа, т. е. что ни p, ни p2 не могут быть представлены простыми дробями, как бы ни были велики их числители и знаменатели. Лежандр первый высказал мысль, что p должно быть число трансцендентное, но только Эрмит, в сочинении «Sur la Fonction Exponentielle» («Comptes Rendus», т. 77, 1873) показал, что основание Неперовых логарифмов, т. е. число е, есть трансцендентное, а Линдеман в 1882 г. («Mathematische Annalen», т. XX), на основании соображений, подобных соображениям Эрмита, показал, что и p есть число трансцендентное. Теорема Линдемана заключается в том, что если х есть корень алгебраического уравнения, которого коэффициенты действительные или мнимые числа, то еx не может быть числом алгебраическим; а так как, то следовательно , а потому и p не может быть числом алгебраическим.
Литература. Montucla, «Histoire des recherches sur la quadrature du cercle» (Пар., 1754); Rudio, «Vier Abhandlungen ueber die Kreismessung» (Лпц., 1892); Hurwitz, «Beweis der Transcendenz der Zahle e und p». На русском языке: Марков, «Доказательство трансцендентности чисел е и p» (СПб., 1883) и перевод статьи Вейерштрасса о невозможности К. круга, в «Известиях Физ. Мат. Общества при казанском унив.» (1894, № 3).
В. Витковский.
Квази
Quasi (как бы, почти) – слово, приставляемое к музыкальному термину, которому хотят дать приблизительное сходство с другим термином; напр. andante quasi allegretto обозначает, что andante должно иметь движение почти одинаковое с allegretto. Quasi una fantasia – сочинение, написанное под влиянием формы фантазии или почти как фантазия. Quasiaccorde – фиктивные, кажущиеся аккорды или случайные гармонии, образуемые проходящими, вспомогательными нотами. Quasisynkope – нота на слабом времени с акцентом и её повторение на сильном, но без соединяющей лиги.
Квакеры
Квакеры (англ. quackers, quakers, т. е. «дрыгуны») – секта, возникшая в Англии в XVII ст. Название это было дано им в насмешку, в виду судорожных движений и припадков, в которые они впадали, когда «нисходил на них Дух Божий».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 https://sdvk.ru/Vodonagrevateli/bojlery/ 

 Террагрес Heidelberg