https://www.dushevoi.ru/products/aksessuary/stoliki/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

и германскому праву. Когда в уме читателя готов по возможности полный и закругленный образ учреждения, излагается оно по русскому закону, с предварительным очерком его происхождения и исторического развития на нашей почве. Таким образом, читателю возможно, в потребных случаях, судить, в чем русский закон учреждения соответствует или не соответствует общему его типу, как он выразился в истории, в экономии и в праве Западной Европы». В таком виде «Курс» П., явившись вместе с тем первой самостоятельной и детальной разработкой действующего русского права в его истории и в связи с практикой, получил в русской литературе большую научную и практическую цену и сделался противовесом германской романистической схоластике, отрешившейся от истории и современного права в его новейших, не схожих с римскими, образованиях. Прочного базиса для оценки реформ, необходимость которых вытекает и из изложения «Курса», автор, однако, не дает. Подчеркивая несоответствия русских норм «общей идее» того или иного «учреждения», П. всегда находит, что реформа их не назрела, что она зависит больше от нравов, чем от законодательства (опека), что вопрос не выяснен (родовые имущества), что на его решение влияют особенности отношений русской церкви и русского государства (семейное право) и т. д. Опасение ввести логическую мысль в построение институтов часто отражается и на ясности юридических определений. Кроме названных трудов, Победоносцеву принадлежат: одна из первых и серьезных научных монографий по истории крепостного права (в «историч. исследованиях и статьях», СП б., 1876), ряд юридических статей в «Архиве» Калачева, "Журн. Мин. Юст. ", «Юрид. Вестнике» и "Русск. Вестнике. (основные черты которых вошли, по большей части, в состав «Курса»), "историкоюридич. акты переходной эпохи XVII – XIII вв. " ("Чтения в Импер. Общ. Истории и Древн. при Московск. Унив. ", 1886); «Материалы для истории приказного судопроизводства в России» (там же, за 1890 г.), статья о ЛеПлэ («Русское Обозрение», 1889, № 9). Переводы: "Приключения чешского дворянина Вратислава в Константинополе. " (с чешск.); «О подражании Христу» (СП б., 1890), «Победа, победившая мир» (4 изд., М., 1895) и др. О «Моск. Сборник», см. «Вестн. Европы» 1896 г.,. №10 и «Историч. Вестник» (1896, № 9).
Поверхность
Поверхность (Surface, Oberflache). – Всякую непрерывную кривую линию можно представить, как след движущейся точки. Подобно этому и всякую П. можно образовать или описать движением в пространстве некоторой кривой линии неизменяемого или изменяемого вида и размеров и при том способ образования П. может быть разнообразен. Например, всякая П. вращения может быть получена вращением надлежащей плоской кривой вокруг оси, находящейся в одной с нею плоскости, и та же П. может быть описана окружностью круга, радиус которого изменяется по надлежащему закону, а плоскость которого движется поступательно вместе с центром, движущимся по оси вращения, перпендикулярной к плоскости круга. Из этого видно, что вид П. может быть еще более разнообразен, чем вид кривых. Наглядное представление о виде П. трудно достижимо помощью рисунков и чертежей, столь удобных для представления плоских кривых линий. Лучшим средством для наглядного представления П. служат модели, металлические, деревянные. гипсовые и др. Предмет учения о П. разного рода, теперь известных и изученных, очень обширен и в настоящей статье придется ограничиться указанием на некоторые виды П. более известные и чаще встречающиеся. Многие П. могут быть аналитически представлены уравнениями вида: f (x, y, z) = 0, выражающими зависимость между координатами точек, принадлежащих П. Иногда П. выражается двумя уравнениями, заключающими кроме координат еще четвертую переменную величину, имеющую значение параметра кривой линии. которая своим движением образует П.; в таком случае уравнение П. должно получиться, по исключении этого переменного параметра, из двух уравнений. Наконец, случается, что координаты точек П. выражены функциями двух переменных параметров, тогда уравнение П. должно быть результатом исключения этих параметров из трех уравнений. Если f(x, у, z) есть функция алгебраическая, то П. называется алгебраическою, а если в этой функции заключаются функции трансцендентные, то П. называется трансцендентною. Соответственно степени уравнения, алгебраические П. разделяются на порядки. П. первого порядка суть плоскости. П. второго порядка: эллипсоиды, шары, гиперболоиды об одной и двух полах, параболоиды эллиптические и гиперболические, цилиндрические и конические П. второго порядка рассматриваются в любом курсе аналитической геометрии в пространстве. П. третьего порядка рассматривались и исследовались с З0-х годов настоящего столетия многими авторами, таково например исследование проф. Клейна ("Mathem. Annal. ", т. Vl), в котором П. эти разделены на несколько классов, начиная с таких, на которых лежат 27 прямых линий. П. четвертого порядка также были предметом изучения некоторых математиков и построены модели многих П. третьего порядка и некоторых четвертого порядка. Наконец, встречаются исследования касательно П. высшего порядка, такова напр. алгебраическая П. девятого порядка, открытая Эннепером и принадлежащая к числу П. minima, т. е. таких, средняя кривизна которых равна нулю. Гиперболоиды об одной поле и параболоиды гиперболические принадлежат к классу линейчатых поверхностей, к которым принадлежат еще всевозможные П. цилиндрические, конические, линейчатые коноиды, линейчатые геликоиды. Гиперболоид об одной поле и параболоид гиперболический имеют по две системы прямолинейных производящих. Линейчатые П. могут быть разделены на два разряда: развертываемые на плоскость и косые. К первым принадлежат: все цилиндрические, все конические П. и геликоид, развертываемый на плоскость. К косым принадлежат вышесказанные гиперболоид и параболоид и обыкновенная винтовая П. производящие которой перпендикулярны к оси. Эта П. есть вместе с тем и коноид и одна из П. minima. П. minima названы так потому, что занимают собою наименьшую площадь при заданном контуре; в каждой точке такой П. сумма главных кривизн или средняя кривизна П. равна нулю. а поэтому они могут быть воспроизведены пластинчатою поверхностью мыльной воды по способу Плато. Существует весьма большая литература по вопросу о П. Minima. В книге Дарбу: «Lecons sur theorie generale des surfaces» (4 тт.) можно найти весьма полное изложение по теории П. Minima. В числе П. Minima есть катеноид, т. е. П., образуемая вращением цепной линии вокруг ее оси абсцисс. Этот катеноид может быть наложен без разрыва и складок на вышесказанную винтовую линейчатую П. таким образом, что, обратившаяся в прямую линию окружность шейки катеноида, ляжет вдоль оси винта, и все кривые меридиональных сечений катеноида обратятся в прямые, которые лягут по производящим. Катеноид есть единственная минимальная П. вращения. П. с постоянною среднею кривизною принадлежат к числу тех, которыми может быть ограничена П. жидкости, неподверженной действию внешних сил. К числу таких П., кроме катеноида, принадлежат две П. вращения: ундулоид и нодоид. Из числа П. с постоянною полной отрицательной кривизной мы укажем на одну П. вращения, меридиональное сечение которой есть трактриса или трактория; эта П. называется псевдосферой, потому что, подобно как на сфере, можно переносить фигуру, начерченную на ней, на другую часть П.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
 https://sdvk.ru/Firmi/Jika/ 

 керамическая плитка для кухни на фартук