https://www.dushevoi.ru/products/mebel-dlja-vannoj/komplektuishie/penaly-i-shkafy/uglovye/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

В качестве
дисперсной фазы широко применяется кремнезем в различных мо-
дификациях. Размеры частиц не более 1 мкм.

Электрореологический эффект не проявляется заметно
вплоть до некоторой пороговой напряженности электрического
поля. Величина ее зависит от состава суспензии и температуры.
После достижения значения Eкр эффективная вязкость растет
приблизительно квадратично, но не до бесконечности, а до ее
насыщения.

Эффект наблюдается и в постоянных и в переменных полях.
При увеличении частоты поля кажущаяся вязкость вначале оста-
ется неизменной, затем падает. Вид зависимости эффекта от
частоты зависит от состава дисперсной системы.

Электрореологические суспенсии весьма чувствительны к
изменениям температуры. Нагрев снижает абсолютную величину
эффективной вязкости системы. С ростом температуры влияние
электрического поля постепенно невилируется.


19.7. Реоэлектрический эффект.

Под действием сдвига в так называемых электрочувстви-
тельных дисперсных системах происходят изменения диэлектри-
ческой проницаемости, электропроводности и тангенса угла диэ-
лектрических потерь. Такие изменения диэлектричеких
параметров предложено называть реоэлектрическим эффектом.
Важное значение реоэлектрического эффекта для практики связа-
но с возможностью получения на его основе электрически ани-
зотропных материалов, в частности электронов. Если частицы
дисперсной фазы несут заряд преимущественно одного знака, в
концентрированных системах при наложении электрического поля
наблюдается электросинерезис - сжатие структурного каркаса в
целом у одного электрода и выделение дисперсной среды у дру-
гого.

В суспезиях, если частички несут положительный или отри-
цательный заряд, под влиянием электрического поля протекает
электрофорез (см.12) и соответственно на катоде или на аноде
осаждается слой дисперсной фазы. Это свойство используется
для создания информационных табло и экранов отображения -
плоских устройств для показа картин с помощью дисперсных сис-
тем, прозрачность которых изменяется под влиянием электричес-
кого поля.

Области возможного практического применения электрорео-
логического эффекта чрезвычайно разнообразны и широки:

1. регулирование движения жидкости, прокачиваемой через
узкий канал;

2. конструкции муфт сцепления, тормозов и других фрикци-
онных устройств;

3. зажимные и фиксирующие устройства ( если пленку
электросвязкой жидкости нанести на тонкую пластину диэлектри-
ка, с другой стороны которого располагаются электроды, соеди-
ненные с источником одно или трехфазного тока, то электропро-
водный эффект, установленный на пластине, будет жестко
зафиксирован "затвердевший" пленкой при наложении достаточно
интенсивного электрического поля);

4. жидкие электрогенераторы, преобразователи тока;

5. электрокинетические весы, примеры использования
электрореологического эффекта подробно рассмотрены в (3).


19.8. Жидкие кристаллы.

Представим себе жидкость, молекулы которой имеют удли-
ненную палочкообразную форму. Силы взаимодействия "выстраива-
ют" их параллельно друг другу и ведут они себя как обычные
молекулы жидкости, но с учетом единственного ограничения -
при всех перемещениях должно сохраняться (в целом) некоторое
выделенное направление длинных осей. У такой жидкости будут
различные оптические и другие характеристики (например, теп-
лопроводность) в различных направлениях, т.е. они будут ани-
зотропной. А ведь анизотропия всегда считалась отличительной
чертой кристаллического состояния!

Жидкость, описанного выше типа, принадлежит обширному
классу веществ, называемых нематическими жидкими кристаллами.
Слово "немос" по-гречески "нить", и, действительно, молекулы
таких жидких кристаллов напоминают бусинки, укрепленные на
нити.

Возможны и другие типы молекулярной архитектуры, создаю-
щие анизотропию. Укладка молекул слоями и пачками приводит к
еще одному классу жидких кристаллов - сметическим. Такая упа-
ковка молекул создает анизотропию не только оптических, но и
механических свойств, посколько слоя легко смещаются относи-
тельно друг друга. Название этой группы связано с греческим
словом "смектос" (мыло). Такое расположение молекул характер-
но для мыльных растворов, эмульсий и т.д.

Третьим распространенным типом жидких кристаллов являют-
ся холестерические, в которых молекулы укладываются в плос-
костях подобно описанным выше нематическим кристаллам, но са-
ми плоскости повернуты друг относительно друга. Вектор,
связанный с длинной осью, так называемой "директор", описыва-
ет в пространстве спираль. Названием этот класс жидких крис-
таллов обячзан печально известному холестирину, у которого
впервые были обнаружены подобные свойства.

19.8.1. Прежде всего было найдено, что воздействие
электрического поля на жидкие кристаллы приводит к электрооп-
тическим эффектам, не имеющих аналогов среди прочих оптичес-
ких сред. Электрооптическая ячейка состоит из двух стекол,
между которыми находится тонкий слой жидкого кристалла. Окра-
шенные поверхности стекол обработаны таким образом, что они,
оставаясь прозрачными, пропускают электрический ток. Таким
образом получают как бы прозрачный конденсатор, диэлектриком
внутри которого служит слой жидкого кристалла.

19.8.2. Первым из открытых и, пожалуй наиболее впечатля-
ющих эффектов стало динамическое рассеяние. При определенном
значении приложенного поля жидкость между электродами как бы
становится мутной. Свет, до сих пор беспрепятственно прихо-
дивший через жидкий кристалл, рассеивается, и участки с повы-
шенной напряженностью поля становятся видны.

Этот простой эффект имеет большую практическую ценность.

Электропроводящие участки поверхности стекла могут быть
выполнены ввиде букв или любых геометричеких фигур. Подавая
на них соответствующие напряжения, можно формировать различ-
ным образом прозрачные и непрозрачные участки, то есть с нич-
тожными затратами энергии создавать подвижные и неподвижные
картины. Использование динамического рассеяния на слое жидко-
го кристалла толщиной в несколько микрометров позволяет полу-
чить изображение, затрачивая мощность порядка микроваттов.
При этом из-за тонкости слоя жидкого кристалла необходимое
напряжение на ячейке составит всего несколько вольт.


19.8.3. Удивительные превращения происходят с лучом све-
та при взаимодействии с колестерическим жидким кристаллом, т.
е. периодической спиралью. Освещенный белым светом, он кажет-
ся окрашенным и при поворотах (при изменении угла наблюдения)
начинает переливаться всеми цветами радуги. Этот эффект воз-
никает потому, что в различных направлениях чешуйки кристал-
ла, отражающие свет, расположены на различных расстояниях и
отражают из белого цвета лишь волны с определенной длинной.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
 всё для сантехники 

 Golden Tile Swedish wallpapers