https://www.dushevoi.ru/products/dushevye-poddony/glubokie/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

За неимением лучшего термина это? “заряд” назвали цветом. (Разумеется, это название не имеет никакого отношения к обычному цвету.) Электромагнитное поле порождается зарядом только одного сорта, а для создания более сложного глюонного поля потребовалось три различных цветовых заряда. Каждый кварк соответственно мог быть одного из трех возможных цветов, которые совершенно произвольно были названы красным, зеленым и синим.
Связанную с этими цветами калибровочную симметрию наглядно можно представить, снова воспользовавшись “волшебной ручкой”, позволяющей смешивать цвета кварков. В данном случае ручка имеет три указателя цвета – красный, зеленый и синий (рис. 20), – а не два. Поворот ручки превращает красные кварки в зеленые или синие в зависимости от направления вращения. И в этом случае превращение происходит непрерывно: красный цвет постепенно переходит в синий и т.д.
Далее теория сильного взаимодействия развивается по тому же сценарию, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии – инвариантности относительно изменений цвета в каждой точке пространства – приводит к необходимости введения компенсирующих силовых полей. Так как на этот раз “волшебная ручка” имеет не два, а три указателя, симметрия оказывается более сложной, что отражается в большем числе 'полей, необходимых для поддержания локальной калибровочной симметрии. Всего требуется восемь новых компенсирующих силовых полей. Частицами – переносчиками этих полей, разумеется, являются глюоны, и, таким образом, из теории следует, что должно быть восемь различных типов глюонов. Это изобилие резко отличается от одного-единственного переносчика электромагнитного взаимодействия (фотона) и трех переносчиков слабого взаимодействия (W+ -,W– и Z-частицы).
Антикварки бывают антикрасные, антизеленые и антисиние. Сами глюоны также несут различные цвета, но не чистые, а смешанные, например сине-антизеленый. Когда кварк испускает глюон, его цвет изменяется в зависимости от цвета глюона. Например, красный кварк может, испустив красно-антисиний глюон, изменить свой цвет на синий. Аналогично зеленый кварк, поглотив сине-антизеленый глюон, превращается в синий и т.д.
Итак, испускание или поглощение глюона сопровождается изменением природы кварка, например превращением красного кварка в зеленый. В этом отношении сильное взаимодействие напоминает слабое, при котором испускание W-частицы сопровождает, скажем, превращение электрона в нейтрино. Кварки участвуют как в сильном, так и в слабом взаимодействии, но изменение природы кварка, сопровождающееся испусканием переносчика слабого взаимодействия, отличается от того, что происходит с кварком при испускании глюона. В то время как глюоны изменяют цвет кварка, слабое взаимодействие изменяет его аромат. Например, при распаде нейтрона один из его d-кварков испускает W–частицу, превращаясь в u-кварк. Важно помнить, что кварки обладают и цветом, и ароматом, и не путать эти их характеристики.
В типичном адроне (например, в протоне) три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения не носят произвольный характер. Математический аппарат теории накладывает жесткое ограничение в виде очень важного правила, которому должна неукоснительно следовать эта “игра цветов”. В любой момент времени “суммарный” цвет трех кварков должен представлять собой сумму “красный + зеленый + синий”. Продолжая аналогию с реальным цветом, можно сказать, что комбинация цветов в адроне должна всегда давать белый цвет (смешение первичных цветов, красного, зеленого и синего, дает белый цвет). Итак, мы видим фундаментальную калибровочную симметрию “за работой”. Действие глюонных полей компенсирует внутренние изменения цветов кварков, неизменно сохраняя чисто белым цвет адрона.

Рис.20.Волшебная ручка с тремя указателями позволяет объяснить более сложную калибровочную симметрию, связанную с цветом кварков. Вращение ручки не сказывается на взаимодействии кварков (осуществляемом путем обмена глюона), но приводит к изменению цветов красного (R), синего (B) и зеленого (G) кварков.
Адроны могут состоять из пар кварк – антиквзрк. Это так называемые мезоны. Так как антикварк характеризуется антицветом, такая комбинация заведомо бесцветна (“белая”). Например, красный кварк в комбинации с антикрасным кварком образует бесцветный мезон. В этой схеме все лептоны также лишены цвета, поскольку не взаимодействуют с глюонным полем.
Квантовая теория цвета, или квантовая хромодинамика (КХД), великолепно объясняет правила, которым подчиняются комбинации кварков (первоначально, в 60-х годах, эти правила специально, ad hoc, вводились на каждый случай). С точки зрения КХД сильное взаимодействие есть не что иное, как стремление поддерживать абстрактную симметрию природы; в данном случае это сохранение белого цвета всех адронов при изменении цвета их составных частей. Стоит потребовать существования в природе такой абстрактной калибровочной симметрии, как неизбежно возникнут глюонные поля. Нам нет нужды измышлять их – они автоматически вытекают из математических выкладок.
Сильное взаимодействие имеет еще одну важную особенность, о которой пока не упоминалось Когда теория кварков только появилась, казалось, что произвести экспериментальную проверку ее не очень сложно. Необходимо лишь раздробить адрон на части и продемонстрировать составляющие его кварки Изолированный кварк должен сразу “бросаться в глаза”, поскольку его электрический заряд составляет либо 1/3 либо 2/3 заряда любой другой частицы.
С тех пор один за другим вступали в строй все более крупные ускорители, но “расщепить” адрон на составные части так и не удалось, и у физиков возникли сомнения в справедливости теории кварков. Действительно, коль скоро кварки существуют внутри протона, то должна же быть возможность выбить их оттуда при достаточно сильном соударении с протоном. Но даже при соударениях с энергией, многократно превосходящей его массу покоя, протон все равно никак не расщеплялся. При таких столкновениях появлялся лишь поток новых целехоньких адронов. Наблюдать отдельные кварки так и не удалось.
Альтернативная стратегия поиска кварков состояла в том, чтобы обратиться к самой природе. Если кварки существуют, то разумно предположить, что где-то они возникли в природе. Возможно, что при образовании вещества сначала появились кварки, из которых затем возникли адроны. Не исключено, что при этом нескольким кваркам не хватило партнеров и они в одиночестве блуждают во Вселенной. Но если эта гипотеза верна, то в результате анализа обычного вещества можно обнаружить эти одиночные кварки, все еще блуждающие где-то неподалеку.
Таким анализом решил заняться Уильям Фейрбэнк из Станфордского университета. „Он тщательно изучил небольшие образцы природных минералов, в частности ниобия, с целью выяснить, не содержат ля они частицы с электрическим зарядом 1/3 или 2/3. Для этого Фейрбэнк наблюдал за поведением образцов в сильном электрическом поле. Он повторял тщательные эксперименты на протяжении ряда лет и не раз сообщал о положительных результатах. В некоторых образцах, по утверждениям Фейрбэнка, присутствовали частицы с дробным электрическим зарядом.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
 купить душевую кабину ривер 

 Absolut Keramika Monocolor Biselado 10х20