Таким образом, структурной группировкой называется группировка, в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому-либо варьирующему признаку. К структурным группировкам относятся группировка населения по полу, возрасту, уровню образования, группировка предприятий по численности работников, уровню заработной платы, объему работ и т. д. В изменении структуры общественных явлений отражаются важнейшие закономерности их развития. Например, группировка в табл. 3.2 показывает, что в период с 1959 по 1994 г. численность городского населения постоянно увеличивалась, а численность сельского падала, однако в период с 1994 по 2002 г. соотношение этих групп населения не изменилось.
Таблица 3.2
Группировка населения России по месту проживания за 1959–2002 гг.
Применение структурных группировок позволяет не только раскрыть структуру совокупности, но и проанализировать изучаемые процессы, их интенсивность, изменение в пространстве, а взятые за ряд периодов времени структурные группировки раскрывают закономерности изменений состава совокупности во времени.
В основу структурных группировок могут быть положены атрибутивный или количественный признаки. Их выбор определяется задачами конкретного исследования и сущностью изучаемой совокупности. Группировка, приведенная в табл. 3.2, построена по атрибутивному признаку. При структурной группировке по количественному признаку возникает необходимость определения числа групп и их границ. Этот вопрос решается в соответствии с задачами исследования. Один и тот же статистический материал может быть разбит на группы различным образом в зависимости от целей и задач исследования. Главное, чтобы в процессе группировки были ярко отражены особенности изучаемого явления и созданы предпосылки для конкретных выводов и рекомендаций. В табл. 3.3 приведена структурная группировка по количественному признаку.
Таблица 3.3
Группировка семей жителей С.-Петербурга по величине среднедушевого дохода (по данным за сентябрь – октябрь 1996 г.)
В данной таблице интервалы групп равны по своей величине. Если применяются равные интервалы, то расчет их величины производится по формуле
где h – величина интервала, xmax и xmin – максимальные и минимальные значения признаков совокупности, k – число групп.
Следует отметить, что технически удобнее иметь дело с равными интервалами, но это далеко не всегда представляется возможным из-за свойств изучаемых явлений и признаков. В экономике чаще приходится применять неравные, прогрессивно увеличивающиеся интервалы, что обусловлено самой природой экономических явлений.
Применение неравных интервалов объясняется главным образом тем, что абсолютное изменение группировочного признака на одну и ту же величину имеет далеко не одинаковое значение для групп с большим и малым значением признака. Например, между двумя предприятиями с численностью рабочих до 300 человек разница в 100 человек более существенна, чем для предприятий с численностью свыше 10 000 человек.
Интервалы групп могут быть замкнутыыми, когда указаны нижняя и верхняя границы, и открыгтыгми, когда указана лишь одна из границ групп. Открытые интервалы применяются только для крайних групп. При группировке с неравными интервалами желательно образование групп с замкнутыми интервалами. Это способствует точности статистических вычислений.
Одна из целей статистического наблюдения – выыявле-ние связей и зависимостей между общественными явлениями. Важной задачей статистического анализа, проводимого на основе типологической группировки, т. е. в пределах однокачественных совокупностей, является задача изучения и измерения связи между отдельными признаками. Установить факт наличия такой связи позволяет аналитическая группировка.
Аналитическая группировка – распространенный прием статистического изучения связей, которые обнаруживаются при параллельном сопоставлении обобщенных значений признаков по группам. Различают признаки зависимые, значения которых изменяются под влиянием других признаков, их обычно в статистике называют результативными, и факторные, оказывающие влияние на другие. Обычно в основе аналитической группировки лежит признак-фактор, а по результативным признакам производится расчет групповых средних, по изменению величины которых определяют наличие связи между признаками. Таким образом, аналитическими можно назвать такие группировки, которые позволяют установить и изучить связь между результативными и факторными признаками единиц однотипной совокупности.
Важная проблема аналитических группировок – правильный выбор числа групп и определение их границ, что в последующем обеспечивает объективность характеристик связи. Поскольку анализ ведется в однокачественных совокупностях, теоретических оснований для дробления определенного типа нет, поэтому допустима разбивка совокупности на любое число групп, удовлетворяющее определенным требованиям и условиям конкретного анализа. В процессе аналитических группировок следует соблюдать общие правила группировки, т. е. единицы в образованных группах должны быть существенно различны, количество единиц в группах должно быть достаточным для расчета надежных статистических характеристик. Кроме того, групповые средние должны подчиняться определенной закономерности: последовательно увеличиваться или уменьшаться.
Непосредственная группировка данных статистического наблюдения – это первичная группировка. Вторичная группировка – перегруппировка ранее сгруппированных данных. Необходимость вторичной группировки возникает в двух случаях:
• ранее произведенная группировка не удовлетворяет целям исследования в отношении числа групп;
• для сравнения данных, относящихся к различным периодам времени или к различным территориям, если первичная группировка была произведена по разным группи-ровочным признакам или по разным интервалам.
Существует два способа вторичной группировки:
• объединение мелких групп в более крупные;
• выделение определенной доли единиц совокупности.
В научно обоснованной группировке общественных явлений необходимо учитывать взаимозависимость явлений и возможность перехода постепенных количественных изменений в явлениях к коренным качественным изменениям. Группировка может быть научной лишь в том случае, если не только определены познавательные цели группировки, но и правильно выбрано основание группировки – группи-ровочный признак. Если группировка – это распределение на однородные группы по какому-либо признаку или объединение отдельных единиц совокупности в группы, однородные по какому-либо признаку, то группировочный признак – это признак, по которому происходит объединение отдельных единиц совокупности в отдельные группы.
При выборе группировочного признака важным является не способ выражения признака, а его значение для изучаемого явления. С этой точки зрения для группировки следует брать существенные признаки, выражающие наиболее характерные черты изучаемого явления.
Самая простая группировка – ряд распределения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
Таблица 3.2
Группировка населения России по месту проживания за 1959–2002 гг.
Применение структурных группировок позволяет не только раскрыть структуру совокупности, но и проанализировать изучаемые процессы, их интенсивность, изменение в пространстве, а взятые за ряд периодов времени структурные группировки раскрывают закономерности изменений состава совокупности во времени.
В основу структурных группировок могут быть положены атрибутивный или количественный признаки. Их выбор определяется задачами конкретного исследования и сущностью изучаемой совокупности. Группировка, приведенная в табл. 3.2, построена по атрибутивному признаку. При структурной группировке по количественному признаку возникает необходимость определения числа групп и их границ. Этот вопрос решается в соответствии с задачами исследования. Один и тот же статистический материал может быть разбит на группы различным образом в зависимости от целей и задач исследования. Главное, чтобы в процессе группировки были ярко отражены особенности изучаемого явления и созданы предпосылки для конкретных выводов и рекомендаций. В табл. 3.3 приведена структурная группировка по количественному признаку.
Таблица 3.3
Группировка семей жителей С.-Петербурга по величине среднедушевого дохода (по данным за сентябрь – октябрь 1996 г.)
В данной таблице интервалы групп равны по своей величине. Если применяются равные интервалы, то расчет их величины производится по формуле
где h – величина интервала, xmax и xmin – максимальные и минимальные значения признаков совокупности, k – число групп.
Следует отметить, что технически удобнее иметь дело с равными интервалами, но это далеко не всегда представляется возможным из-за свойств изучаемых явлений и признаков. В экономике чаще приходится применять неравные, прогрессивно увеличивающиеся интервалы, что обусловлено самой природой экономических явлений.
Применение неравных интервалов объясняется главным образом тем, что абсолютное изменение группировочного признака на одну и ту же величину имеет далеко не одинаковое значение для групп с большим и малым значением признака. Например, между двумя предприятиями с численностью рабочих до 300 человек разница в 100 человек более существенна, чем для предприятий с численностью свыше 10 000 человек.
Интервалы групп могут быть замкнутыыми, когда указаны нижняя и верхняя границы, и открыгтыгми, когда указана лишь одна из границ групп. Открытые интервалы применяются только для крайних групп. При группировке с неравными интервалами желательно образование групп с замкнутыми интервалами. Это способствует точности статистических вычислений.
Одна из целей статистического наблюдения – выыявле-ние связей и зависимостей между общественными явлениями. Важной задачей статистического анализа, проводимого на основе типологической группировки, т. е. в пределах однокачественных совокупностей, является задача изучения и измерения связи между отдельными признаками. Установить факт наличия такой связи позволяет аналитическая группировка.
Аналитическая группировка – распространенный прием статистического изучения связей, которые обнаруживаются при параллельном сопоставлении обобщенных значений признаков по группам. Различают признаки зависимые, значения которых изменяются под влиянием других признаков, их обычно в статистике называют результативными, и факторные, оказывающие влияние на другие. Обычно в основе аналитической группировки лежит признак-фактор, а по результативным признакам производится расчет групповых средних, по изменению величины которых определяют наличие связи между признаками. Таким образом, аналитическими можно назвать такие группировки, которые позволяют установить и изучить связь между результативными и факторными признаками единиц однотипной совокупности.
Важная проблема аналитических группировок – правильный выбор числа групп и определение их границ, что в последующем обеспечивает объективность характеристик связи. Поскольку анализ ведется в однокачественных совокупностях, теоретических оснований для дробления определенного типа нет, поэтому допустима разбивка совокупности на любое число групп, удовлетворяющее определенным требованиям и условиям конкретного анализа. В процессе аналитических группировок следует соблюдать общие правила группировки, т. е. единицы в образованных группах должны быть существенно различны, количество единиц в группах должно быть достаточным для расчета надежных статистических характеристик. Кроме того, групповые средние должны подчиняться определенной закономерности: последовательно увеличиваться или уменьшаться.
Непосредственная группировка данных статистического наблюдения – это первичная группировка. Вторичная группировка – перегруппировка ранее сгруппированных данных. Необходимость вторичной группировки возникает в двух случаях:
• ранее произведенная группировка не удовлетворяет целям исследования в отношении числа групп;
• для сравнения данных, относящихся к различным периодам времени или к различным территориям, если первичная группировка была произведена по разным группи-ровочным признакам или по разным интервалам.
Существует два способа вторичной группировки:
• объединение мелких групп в более крупные;
• выделение определенной доли единиц совокупности.
В научно обоснованной группировке общественных явлений необходимо учитывать взаимозависимость явлений и возможность перехода постепенных количественных изменений в явлениях к коренным качественным изменениям. Группировка может быть научной лишь в том случае, если не только определены познавательные цели группировки, но и правильно выбрано основание группировки – группи-ровочный признак. Если группировка – это распределение на однородные группы по какому-либо признаку или объединение отдельных единиц совокупности в группы, однородные по какому-либо признаку, то группировочный признак – это признак, по которому происходит объединение отдельных единиц совокупности в отдельные группы.
При выборе группировочного признака важным является не способ выражения признака, а его значение для изучаемого явления. С этой точки зрения для группировки следует брать существенные признаки, выражающие наиболее характерные черты изучаемого явления.
Самая простая группировка – ряд распределения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53