https://www.dushevoi.ru/products/tumby-s-rakovinoy/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z


 

Iz =?zQ/?zQ.
При многосторонних сравнениях, например при сравнениях качественных показателей по нескольким областям, нужно, соответственно, расширить и границы территории, на уровне которой фиксируются веса.
В сводных территориальных индексах объемных показателей в качестве весов могут быть приняты средние уровни соответствующих качественных показателей, вычисленные в целом по сравниваемым территориям. Так, в нашем примере

7.6. Средние индексы

В зависимости от методологии расчета индивидуальных и сводных индексов различают средние арифметические и средние гармонические индексы. Другими словами, общий индекс, построенный на базе индивидуального индекса, принимает форму среднего арифметического или гармонического индекса, т. е. он может быть преобразован в средний арифметический и средний гармонический индексы.
Идея построения сводного индекса в виде средней величины из индивидуальных (групповых) индексов вполне объяснима: ведь сводный индекс является общей мерой, характеризующей среднюю величину изменения индексируемого показателя, и, конечно, его величина должна зависеть от величин индивидуальных индексов. А критерием правильности построения сводного индекса в форме средней величины (среднего индекса) является его тождественность агрегатному индексу.
Преобразование агрегатного индекса в средний из индивидуальных (групповых) индексов производится следующим образом: либо в числителе, либо в знаменателе агрегатного индекса индексируемый показатель заменяется его выражением через соответствующий индивидуальный индекс. Если такую замену сделать в числителе, то агрегатный индекс будет преобразован в средний арифметический, если же в знаменателе – то в средний гармонический из индивидуальных индексов.
Например, известен индивидуальный индекс физического объема iq = q1/q0 и стоимость продукции каждого вида в базисном периоде (q0p0). Исходной базой построения среднего из индивидуальных индексов служит сводный индекс физического объема:
(агрегатная форма индекса Ласпейреса).
Из имеющихся данных непосредственно суммированием можно получить только знаменатель формулы. Числитель же может быть получен перемножением стоимости отдельного вида продукции базисного периода на индивидуальный индекс:
Тогда формула сводного индекса примет вид:
т. е. получим средний арифметический индекс физического объема, где весами служит стоимость отдельных видов продукции в базисном периоде.
Допустим, что в наличии имеется информация о динамике объема выпуска каждого вида продукции (г^) и стоимости каждого вида продукции в отчетном периоде (p1q1). Для определения общего изменения выпуска продукции предприятия в этом случае удобно воспользоваться формулой Пааше:
Числитель формулы можно получить суммированием величин q1P1, а знаменатель – делением фактической стоимости каждого вида продукции на соответствующий индивидуальный индекс физического объема продукции, т. е. делением: p1q1/iq , тогда:
таким образом, получаем формулу среднего взвешенного гармонического индекса физического объема.
Применение той или иной формулы индекса физического объема (агрегатного, среднего арифметического и среднего гармонического) зависит от имеющейся в распоряжении информации. Также нужно иметь в виду, что агрегатный индекс может быть преобразован и рассчитан как средний из индивидуальных индексов только при совпадении перечня видов продукции или товаров (их ассортимента) в отчетном и базисном периодах, т. е. когда агрегатный индекс построен по сравнимому кругу единиц (агрегатные индексы качественных показателей и агрегатные индексы объемных показателей при условии сравнимого ассортимента).

Тема 8. АНАЛИЗ ДИНАМИКИ

8.1. Динамика социально-экономических явлений и задачи ее статистического изучения

Явления общественной жизни, изучаемые социально-экономической статистикой, находятся в непрерывном изменении и развитии. С течением времени – от месяца к месяцу, от года к году – изменяются численность населения и его состав, объем производимой продукции, уровень производительности труда и т. д., поэтому одной из важнейших задач статистики является изучение изменения общественных явлений во времени – процесса их развития, их динамики. Эту задачу статистика решает путем построения и анализа рядов динамики (временных рядов).
Ряд динамики (хронологический, динамический, временной ряд) – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Ряд включает два обязательных элемента: время и конкретное значение показателя (уровень ряда).
Каждое числовое значение показателя, характеризующее величину, размер явления, называется уровнем ряда. Кроме уровней каждый ряд динамики содержит указания о тех моментах либо периодах времени, к которым относятся уровни.
При подведении итогов статистического наблюдения получают абсолютные показатели двух видов. Одни из них характеризуют состояние явления на определенный момент времени: наличие на этот момент каких-либо единиц сово-
купности или наличие того или иного объема признака. К таким показателям относится численность населения, парк автомобилей, жилищный фонд, товарные запасы и т. д. Величину таких показателей можно определить непосредственно только по состоянию на тот или иной момент времени, а потому эти показатели и соответствующие ряды динамики и называются моментными.
Другие показатели характеризуют итоги какого-либо процесса за определенный период (интервал) времени (сутки, месяц, квартал, год и т. п.). Такими показателями являются, например, число родившихся, количество произведенной продукции, ввод в действие жилых домов, фонд заработной платы и др. Величину этих показателей можно подсчитать только за какой-нибудь интервал (период) времени, поэтому такие показатели и ряды их значений называются интервальными.
Из различного характера интервальных и моментных абсолютных показателей вытекают некоторые особенности (свойства) уровней соответствующих рядов динамики. В интервальном ряду величина уровня, представляющего собой итог какого-либо процесса за определенный интервал (период) времени, зависит от продолжительности этого периода (длины интервала). При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.
В моментных же рядах динамики, где тоже есть интервалы – промежутки времени между соседними в ряду датами, – величина того или иного конкретного уровня не зависит от продолжительности периода между соседними датами.
Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней, поэтому в интервальном ряду динамики уровни за примыкающие друг к другу периоды времени можно суммировать, получая итоги (уровни) за более продолжительные периоды (так, суммируя месячные уровни, получим квартальные, суммируя квартальные, получим годовые, суммируя годовые – многолетние).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 мебель для ванной 

 Kerranova Carrara