https://www.dushevoi.ru/products/vanny/iz-litievogo-mramora/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

и соответствующей водоросли) был произведен Шталем, а потом Бонье в форме, устраняющей всякие сомнения (на стерилизованном субстрате, вне доступа посторонних организмов). При участии света и хлорофилла водоросль образует из неорганических веществ органические (гриб на это неспособен) и часть их уделяет грибу. Гриб, по-видимому, доставляет водоросли в изобилии неорганические вещества, которые сам черпает из почвы и укрывает ее от засухи, ветра и других неблагоприятных атмосферных влияний. Вообще же гриб больше извлекает пользы из водоросли, чем обратно. Если молодые гифы, выходящие из спор, скоро не встретят подходящей водоросли, то погибают обыкновенно; встретив же таковую, быстро ее оплетают; таким путем и залагается Л. Наоборот, водоросль может вполне обходиться без гриба, хотя существуют прямые наблюдения, свидетельствующие о благотворном влиянии гриба на водоросль в некоторых случаях. Химический состав Л. представляет несколько интересных особенностей. Все лишаи в большем или меньшем количестве содержат подобное крахмалу вещество, так назыв. лихенин или лишаиниковый крахмал, многие заключают особые горькие вещества (обусловливающие горький вкус Л., напр. исландского мха) и особые лишайниковые кислоты, которые со щелочами дают яркоокрашенные соединения, почему некоторые из таких Л. применяются в промышленности для приготовления красящих веществ: лакмуса, orseille и т. п. В большом количестве многие Л. содержат также щавелево-кислую известь. Кроме только что упомянутых доставляющих краски Л. большое значение для человека имеют еще некоторые другие – исландский и олений мох на крайнем Севере, на Юге – съедобная манна лишайниковая. Неизмеримо важнее роль Л. в общем обмене веществ в природе. Л. первые поселяются на голых камнях и скалах; медленно, но неустанно разрыхляют и разрушают их, сильно способствуя процессу выветривания, и подготовляют слой рыхлой почвы, на котором могут селиться уже мхи и высшие растения. В холодных и умеренных странах Л. – самые обыкновенные растения; на камнях, деревьях, мхах или прямо на земле, даже на заборах, каменных стенах и т. п. ту или другую форму можно найти круглый год, и летом, и зимой. Всего видов Л. (по Ниландеру) известно около 1400, из них 650 растут в Европе. В северных странах они составляют значительную долю всех видов растений, напр. в Лапландии на 650 явнобрачных приходится 220 Л., в Скандинавии это отношение 1250 : 372. К тому же на Севере Л. часто одни исключительно покрывают огромные пространства (напр. исландский, олений мох и др.). Вместе с мхами в горах они составляют последние следы растительной жизни вблизи границы снегов. В умеренных странах относительное число видов Л. меньше, но абсолютное – больше (напр. в Германии около 500 видов). Некоторые тропические виды живут на листьях вечнозеленых растений. Классифицируют Л. различные ученые различно. Руководствуясь природой входящего в состав Л. гриба, Л. делят на сумчатые и базидиальные (Ascolichenes и Basidiolichenes); каждую из этих групп опять на две группы: гимнокарпические и ангиокарпические Л. Базидиальные Л. открыты недавно и число их пока очень ограничено. Подробнее и литературу см. Ван-Тигема «Traite de Botanique» (2-е изд., 1891) также Krempelhuber, «Geschichte und Literatur der Lichenologie» (3 т., Мюнхен, 1867 – 72). Для определения и ознакомления с более обыкновенными, чаще встречающимися формами – см. Leunis-Frank, «Synopsis der Pflanzenkunde» (III т., 1886), и Kummer, «Fuhrer in die Flechtenkunde» (Берлин, 2-е изд., 1883).
Г. Надсон.
Лишение свободы
Лишение свободы как наказание, заключается в том, что преступник в более или менее значительной степени ограничивается в свободе располагать собой и своими действиями, особенно в свободе передвижения. Л. свободы является центром современной карательной системы, в которой оно заняло место, прежде принадлежавшее смертной казни и телесным наказаниям. В видах достижения исправительных целей Л. свободы передвижения сопряжено с различными ограничениями, как-то обязательным трудом, обязательным режимом жизни и т. п. Все виды Л. свободы могут быть сведены к трем: надзор, заключение и удаление.
Лобачевский
Лобачевский (Николай Иванович) – великий русский геометр, творец науки, называемой, по его имени, гeoмeтpиeй Лобачевского; род. 22 октября 1793 г., воспитывался в казанской гимназии и университете, по математическому факультету. В 1811 г. Л. получил степень магистра и приступил к преподаванию в казанском унив. небесной механики и теории чисел. В 1816 г. Л. получил кафедру чистой математики. Он был 6 раз кряду избираем в ректоры университета и состоял членом многих ученых обществ и почетным членом университетов московского и казанского. Деятельность Л. была изумительна: он читал лекции и свои и за своих товарищей, посылаемых за границу, присутствовал на всех заседаниях и, в то же время, являлся творцом совершенно новых взглядов на геометрию. В числе аксиом, положенных Евклидом в основание геометрии, существует одна, так называемая 11-я аксиома, сводимая к утверждению, что через одну точку может быть проведена к данной прямой только одна параллельная. Уже с давних пор многим геометрам это положение не представлялось очевидным, и существует огромная литература попыток доказать это положение, основываясь на других аксиомах; но все такие попытки были неудачны, представляя собою сведение 11-й аксиомы на какое-нибудь другое положение, тоже не очевидное. Таким образом оставался нерешенным вопрос первостепенной важности: о степени достоверности геометрии, вытекающий из вопроса о том, достоверна ли 11-я аксиома. Эту трудную задачу, не поддававшуюся усилиям величайших умов, Л. решил окончательно, избрав чрезвычайно оригинальный путь. Л. попытался построить целую систему геометрических положений, исходящих из отрицания справедливости 11-й аксиомы, и при том систему строго логичную, не содержащую никаких внутренних противоречий. Если 11-я аксиома Евклида может быть доказана при помощи других аксиом, то она должна быть их следствием; если она представляет собой их следствие, то система Л., отвергающая ее, должна стать в противоречие с одной из других аксиом; если же такого противоречия не последует, то 11-я аксиома не представляет собой следствия одной из остальных аксиом, не может быть, при помощи их, доказана и является положением, которое следует или принять без доказательств, или свести на положение более очевидное. Против такого рассуждения возражали, говоря, что система Л. потому не встретилась с противоречием, что не была до него доведена, но итальянский геометр Бельтрами показал, что вся система Л. вполне совпадает с системой Евклида, если сравнить геометрию Л. на плоскости с обыкновенной геометрией на особой поверхности, называемой псевдосферой и представляющей вид шампанского бокала; так что если бы геометрия Л. встретила при своем развитии какие-либо несообразности, то и обыкновенная геометрия на псевдосфере была бы нелепа, откуда следует, что геометрия Л. не может быть приведена к абсурду. Таким образом, одна из великих заслуг Л. заключается в данном им доказательстве невозможности доказать 11-ю аксиому посредством других аксиом. Создав свою геометрию, Л. дал толчок к построению геометрических систем, имеющих дело с пространствами, совершенно не похожими на обыкновенное пространство, и этим указал на возможность логического мышления, имеющего объектами вещи, находящиеся вне времени и вне нашего обыкновенного пространства.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 купить стальную ванну 170х70 недорого в интернет магазине 

 плитка золотой водопад kerama marazzi