На следующий год в честь него новый, сотый элемент был назван фермием.
ВЕРНЕР ГЕЙЗЕНБЕРГ
(1901–1976)
Вернер Гейзенберг был одним из самых молодых учёных, получивших Нобелевскую премию. Целеустремлённость и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки — принципа неопределённости.
Вернер Карл Гейзенберг родился 5 декабря 1901 года в немецком городе Вюрцбурге. Отец Вернера, Август, благодаря успешной научной деятельности сумел подняться до уровня представителей высшего класса немецкой буржуазии. В 1910 году он стал профессором византийской филологии Мюнхенского университета. Матерью мальчика была урождённая Анна Веклейн.
С самого рождения Вернера его семья твёрдо решила, что он тоже должен достичь высокого социального положения благодаря образованию. Полагая, что соперничество должно благоприятствовать достижению успеха в науке, отец провоцировал Вернера и его старшего брата Эрвина к постоянной конкуренции. В течение многих лет мальчики часто дрались, и однажды соперничество довело их до такой драки, что они били друг друга деревянными стульями. Повзрослев, каждый из них пошёл собственным путём: Эрвин уехал в Берлин и стал химиком, они почти не общались, не считая редких встреч в кругу семьи.
В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Гёттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что учёным нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определённом положении частиц. Основа микромира — кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.
Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна… Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше…
По теории квантов атом испускает свет, переходя из одного энергетического состояния в другое. А по теории Эйнштейна интенсивность света определённой частоты зависит от количества фотонов. Значит, можно было попытаться связать интенсивность излучения с вероятностью атомных переходов. Квантовые колебания электронов, уверял Гейзенберг, нужно представлять только с помощью чисто математических соотношений. Надо лишь подобрать для этого подходящий математический аппарат. Молодой учёный выбрал матрицы. Выбор оказался удачным, и скоро его теория была готова. Работа Гейзенберга заложила основы науки о движении микроскопических частиц — квантовой механики.
В ней вообще не говорится ни о каком движении электрона. Движения в прежнем смысле этого слова не существует. Матрицы описывают просто изменения состояния системы. Потому спорные вопросы об устойчивости атома, о вращении электронов вокруг ядра, о его излучении отпадают сами собой. Вместо орбиты в механике Гейзенберга электрон характеризуется набором или таблицей отдельных чисел вроде координат на географической карте.
Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики, и скоро, по выражению Бора, она приобрела «вид, который по своей логической завершённости и общности мог конкурировать с классической механикой».
Впрочем, было в работе Гейзенберга и одно удручающее обстоятельство. По его словам, ему никак не удавалось вывести из новой теории простой спектр водорода. И каково было его удивление, когда некоторое время спустя после опубликования его работы… «Паули преподнёс мне сюрприз: законченную квантовую механику атома водорода. Мой ответ от 3 ноября начинался словами: „Едва ли нужно писать, как сильно я радуюсь новой теории атома водорода и насколько велико моё удивление, что Вы так быстро смогли её разработать“».
Почти в то же самое время теорией атома с помощью новой механики занимался и английский физик Дирак. И у Гейзенберга, и у Дирака вычисления носили крайне абстрактный характер. Никто из них не уточнял сущность употребляемых символов. И лишь в конце вычислений вся их математическая схема давала правильный результат.
Математические аппараты, которыми пользовались Гейзенберг и Дирак при разработке теорий атома в новой механике, были для большинства физиков и непривычны, и сложны. Не говоря уже о том, что никто из них, несмотря на все ухищрения, не мог свыкнуться с мыслью, что волна — это частица, а частица — волна. Как представить себе такого оборотня?
Работавший в то время в Цюрихе Эрвин Шрёдингер подошёл к проблемам атомной физики совершенно с другой стороны и с другими целями. Его идея состояла в том, что любую движущуюся материю можно рассматривать в виде волн. Если это верно, то Шрёдингер превращал основы матричной механики Гейзенберга в нечто совершенно неприемлемое.
В мае 1926 года Шрёдингер опубликовал доказательство того, что эти два конкурирующих подхода по существу математически эквивалентны. Гейзенберг и другие приверженцы матричной механики сразу же начали борьбу в защиту своей концепции, причём с обеих сторон она принимала всё более эмоциональную окраску. В защиту этого подхода они поставили на карту своё будущее. Шрёдингер же рисковал своей репутацией, отказываясь от признания кажущихся иррациональными понятий дискретности и квантовых скачков и возвращаясь к физическим закономерностям непрерывного, причинно обусловленного и рационального волнового движения. Ни одна из сторон не желала пойти на уступки, что означало бы признание профессионального превосходства противников. Сама суть и будущее направление развития квантовой механики внезапно стали предметом спора в научном мире.
Этот раздор в дальнейшем усилился в связи с появлением карьерных амбиций со стороны Гейзенберга. Всего за несколько недель до того, как Шрёдингер опубликовал доказательство эквивалентности обоих подходов, Гейзенберг отказался от должности профессора в Лейпцигском университете, отдав предпочтение сотрудничеству с Бором в Копенгагене. Скептически настроенный Веклейн, дед Вернера, поспешил в Копенгаген, чтобы попытаться отговорить внука от принятого им решения; именно в этот момент появилась работа Шрёдингера об эквивалентности обоих подходов. Возобновившееся давление Веклейна и брошенный Шрёдингером вызов фундаментальным основам матричной физики заставили Гейзенберга удвоить усилия и попытаться сделать работу на таком высоком уровне, чтобы она получила широкое признание у специалистов, и в конечном итоге обеспечила бы получение места на какой-либо другой кафедре.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
ВЕРНЕР ГЕЙЗЕНБЕРГ
(1901–1976)
Вернер Гейзенберг был одним из самых молодых учёных, получивших Нобелевскую премию. Целеустремлённость и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки — принципа неопределённости.
Вернер Карл Гейзенберг родился 5 декабря 1901 года в немецком городе Вюрцбурге. Отец Вернера, Август, благодаря успешной научной деятельности сумел подняться до уровня представителей высшего класса немецкой буржуазии. В 1910 году он стал профессором византийской филологии Мюнхенского университета. Матерью мальчика была урождённая Анна Веклейн.
С самого рождения Вернера его семья твёрдо решила, что он тоже должен достичь высокого социального положения благодаря образованию. Полагая, что соперничество должно благоприятствовать достижению успеха в науке, отец провоцировал Вернера и его старшего брата Эрвина к постоянной конкуренции. В течение многих лет мальчики часто дрались, и однажды соперничество довело их до такой драки, что они били друг друга деревянными стульями. Повзрослев, каждый из них пошёл собственным путём: Эрвин уехал в Берлин и стал химиком, они почти не общались, не считая редких встреч в кругу семьи.
В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Гёттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что учёным нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определённом положении частиц. Основа микромира — кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.
Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна… Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше…
По теории квантов атом испускает свет, переходя из одного энергетического состояния в другое. А по теории Эйнштейна интенсивность света определённой частоты зависит от количества фотонов. Значит, можно было попытаться связать интенсивность излучения с вероятностью атомных переходов. Квантовые колебания электронов, уверял Гейзенберг, нужно представлять только с помощью чисто математических соотношений. Надо лишь подобрать для этого подходящий математический аппарат. Молодой учёный выбрал матрицы. Выбор оказался удачным, и скоро его теория была готова. Работа Гейзенберга заложила основы науки о движении микроскопических частиц — квантовой механики.
В ней вообще не говорится ни о каком движении электрона. Движения в прежнем смысле этого слова не существует. Матрицы описывают просто изменения состояния системы. Потому спорные вопросы об устойчивости атома, о вращении электронов вокруг ядра, о его излучении отпадают сами собой. Вместо орбиты в механике Гейзенберга электрон характеризуется набором или таблицей отдельных чисел вроде координат на географической карте.
Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики, и скоро, по выражению Бора, она приобрела «вид, который по своей логической завершённости и общности мог конкурировать с классической механикой».
Впрочем, было в работе Гейзенберга и одно удручающее обстоятельство. По его словам, ему никак не удавалось вывести из новой теории простой спектр водорода. И каково было его удивление, когда некоторое время спустя после опубликования его работы… «Паули преподнёс мне сюрприз: законченную квантовую механику атома водорода. Мой ответ от 3 ноября начинался словами: „Едва ли нужно писать, как сильно я радуюсь новой теории атома водорода и насколько велико моё удивление, что Вы так быстро смогли её разработать“».
Почти в то же самое время теорией атома с помощью новой механики занимался и английский физик Дирак. И у Гейзенберга, и у Дирака вычисления носили крайне абстрактный характер. Никто из них не уточнял сущность употребляемых символов. И лишь в конце вычислений вся их математическая схема давала правильный результат.
Математические аппараты, которыми пользовались Гейзенберг и Дирак при разработке теорий атома в новой механике, были для большинства физиков и непривычны, и сложны. Не говоря уже о том, что никто из них, несмотря на все ухищрения, не мог свыкнуться с мыслью, что волна — это частица, а частица — волна. Как представить себе такого оборотня?
Работавший в то время в Цюрихе Эрвин Шрёдингер подошёл к проблемам атомной физики совершенно с другой стороны и с другими целями. Его идея состояла в том, что любую движущуюся материю можно рассматривать в виде волн. Если это верно, то Шрёдингер превращал основы матричной механики Гейзенберга в нечто совершенно неприемлемое.
В мае 1926 года Шрёдингер опубликовал доказательство того, что эти два конкурирующих подхода по существу математически эквивалентны. Гейзенберг и другие приверженцы матричной механики сразу же начали борьбу в защиту своей концепции, причём с обеих сторон она принимала всё более эмоциональную окраску. В защиту этого подхода они поставили на карту своё будущее. Шрёдингер же рисковал своей репутацией, отказываясь от признания кажущихся иррациональными понятий дискретности и квантовых скачков и возвращаясь к физическим закономерностям непрерывного, причинно обусловленного и рационального волнового движения. Ни одна из сторон не желала пойти на уступки, что означало бы признание профессионального превосходства противников. Сама суть и будущее направление развития квантовой механики внезапно стали предметом спора в научном мире.
Этот раздор в дальнейшем усилился в связи с появлением карьерных амбиций со стороны Гейзенберга. Всего за несколько недель до того, как Шрёдингер опубликовал доказательство эквивалентности обоих подходов, Гейзенберг отказался от должности профессора в Лейпцигском университете, отдав предпочтение сотрудничеству с Бором в Копенгагене. Скептически настроенный Веклейн, дед Вернера, поспешил в Копенгаген, чтобы попытаться отговорить внука от принятого им решения; именно в этот момент появилась работа Шрёдингера об эквивалентности обоих подходов. Возобновившееся давление Веклейна и брошенный Шрёдингером вызов фундаментальным основам матричной физики заставили Гейзенберга удвоить усилия и попытаться сделать работу на таком высоком уровне, чтобы она получила широкое признание у специалистов, и в конечном итоге обеспечила бы получение места на какой-либо другой кафедре.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187