де Бройль, напротив, ставит уже вопрос о наличии у частиц свойств волны. И вот теперь Э. Шредингер объявляет, что все события, разьпрывающиеся в микромире, есть волновые процессы, и только они. Частицы?.. Их тоже можно мастерить из волн.
Наука как бы совершила виток. Но она не вернулась к исходному пункту. Обогащенная новыми представлениями, она ушла вперед. А вот ученые, прочно удерживаемые традицией, надеялись вернуть старое.
Создавая волновую механику, Э. Шредингер полагал, что, возможно, она со временем приведет опять к более или менее классической картине. По его мнению, ядро атома должно быть окружено не электронами, а волнами материи, которые движутся в обычном трехмерном пространстве. Одновременно он мечтал избавиться от дискретных, квантовых состоянии. Они казались ему иррациональными. «Если мы собираемся сохранить эти проклятые квантовые скачки, — заявил ученый, — то я жалею, что имел дело с квантовой теорией!»
Парадоксально и то, что Э. Шредингер не сразу сам понял все значение своего открытия. Он работал тогда в семинаре известного немецкого физика П. Дебая. Руководитель семинара попросил его сделать сообщение о появившейся во французском журнале статье Л. де Бройля. Однако статья ему не понравилась, и он заявил, что о такой чепухе даже и говорить не хочется.
П. Дебай настаивал. Тогда Э. Шредингер решил представить идею Л. де Бройля в более строгой математической форме и обобщенно. Это удалось. Но то, что он получил, и оказалось знаменитым волновым уравнением (уравнение Шредингера). Оно описывало движение частиц. Как считает П. Дебай, который рассказывал об этом советскому физику П. Капице, даже во время доклада на семинаре Э. Шредингер не осознавал, какое открытие он держит в руках. Ученый искренне полагал, что нашел всего лишь лучший способ изложения мысли Л. де Бройля.
Почти одновременно с Э. Шредингером В. Гейзенберг предложил другой путь описания движения микрочастиц. С его именем связано построение так называемого матричного — в отличие от волнового — варианта квантовой механики.
Квантовые проявления в движении частиц В. Гейзенберг выразил следующим образом. Он сопоставил каждой величине, характеризующей механические состояния частицы, математическую величину в виде матрицы.
Так называется прямоугольная таблица чисел, состоящая из определенного количества строк и столбцов.
К полученным таким образом величинам применялись уже уравнения классической механики. Поскольку матрицы отличались от обычных чисел, это приводило к новым результатам.
Впоследствии оба варианта слились, и в современной квантовой механике эти два метода уже неразличимы.
Но здесь нам хотелось бы отметить, что вначале В. Гейзенберг рассматривал свою теорию как несовместимую с волновой механикой и даже обиделся на учителя М. Борна, который проявил интерес к построениям Э. Шредингера. Впрочем, Э. Шредингер платил тем же.
В этом противостоянии идей также отразилось влияние классических воззрений, не допускавших смешения волновых и дискретных свойств.
Как видим, отцы квантовой механики, создавая принципиально новую теорию, находились в плену старых воззрений. Отсюда парадоксальность положения: не только другие, но и сами создатели нового выступили против собственных идей. Они тяготели к традиционным взглядам, хотя по мере развития квантовых представлений сила этой привязанности ослабевала.
ГИПНОЗ ВЕЛИКОГО
Были рассмотрены факты, объясняющие приверженность господствующей парадигме тем, что она в свое время утверждалась как истина. А с истиной трудно расставаться.
Кроме того, у парадигмы есть еще то назначение, что она выполняет роль своего рода барьера на пути скороспелых решений. Также и по этой причине с ней не спешат проститься. Э. Ферми, в частности, считал, что новые законы следует принимать в науке не раньше, чем когда никакого иного выхода уже нет. А советскин астроном В. Шкловский предлагает ввести в космологию правило «презумпции естественности»: только после того, как все попытки естественного объяснения космического явления будут исчерпаны, можно с большой осторожностью обсуждать «искусственные» возможности.
Парадигма и встает преградой потоку легковесных и околонаучных рассуждений, она спасает знания от засорения непродуманными гипотезами и идеями. Вот только один пример. После открытия К. Рентгена каких только не было обнаружено новых лучей: лучи Гретца, Блондло, Эф-лучи… На поверку же вышло, что это плод недоразумений либо ошибок эксперимента.
И прежняя парадигма, несмотря на то, что она была поколеблена, вернее, уточнена К. Рентгеном, свою охранную роль против нашествия этих мифических лучей сыграла.
Таким образом, наука, продвигаясь от одного этапа к другому и обретая с каждым таким шагом новую истину, полагает, что она утверждается на веки вечные, что конца ей не предвидится. Истина… Какие же еще нужны гарантии?
Наряду с этим фактором (назовем его гносеологическим, то есть относящимся к области теории познания) исключительное значение обретают психологические моменты. Нам уже довелось немного сказать о них в связи с явлениями несовместимости в среде ученых.
Сейчас речь о другом.
Будучи истиной, парадигма превращается в своего рода инструмент по добыванию, обработке и описанию фактов. Так, постоянно оправдывая себя как надежная опора нашей научно-теоретической и практической деятельности, парадигма становится привычной.
С нею сживаются настолько, что и не мыслят иных возможностей, иных толкований, кроме тех, что она предлагает.
Постепенно вырабатывается психологическая установка. Проблема истинности, достоверности отходит на второй план, и парадигма признается уже по инерции, потому что ее принимают другие, потому что ее принимали до нас.
Естественно, если старое удобно, то все новое, напротив, кажется поначалу неудобным и потому отвергается. Старые москвичи рассказывают, например, что, когда в столице впервые пустили метро, многих приходилось агитировать, убеждать пользоваться им. По юн же причине некоторые пожилые работники бухгалтерии, имея на вооружении арифмометры, охотнее вычисляют на счетах.
Здесь мы имеем дело с инерцией мысли. К сожалению, она проявляется также среди ученых и бывает порой настолько сильной, что способна держать в плену мужей науки в течение целых столетий.
Советский профессор А. Силин обращает внимание на такую характерную черту нашей технологии, как необычайная живучесть однажды найденных конструкторских решений.
Скажем, отчего, имея перед глазами весьма эконОный способ передвижения рыб с помощью хвоста и плавников, люди придерживаются совсем другого, крайне неэффективного способа, каким является использование винта? Ведь коэффициент полезною действия винтовых судов очень низок. Винт не просто отталкивает воду (этого было бы вполне достаточно для создания тяги). Он к тому же закручивает встречный поток, что требует дополнительных энергетических затрат.
Человек предпочитает этот путь потому, что за ним традиция. Винт — преемник водяного колеса, которое появилось на кораблях задолго до создания пароходов и которое само определенно наследовало строение колес водяной мельницы. Изобретение же этой последней тонет в толще тысячелетни.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Наука как бы совершила виток. Но она не вернулась к исходному пункту. Обогащенная новыми представлениями, она ушла вперед. А вот ученые, прочно удерживаемые традицией, надеялись вернуть старое.
Создавая волновую механику, Э. Шредингер полагал, что, возможно, она со временем приведет опять к более или менее классической картине. По его мнению, ядро атома должно быть окружено не электронами, а волнами материи, которые движутся в обычном трехмерном пространстве. Одновременно он мечтал избавиться от дискретных, квантовых состоянии. Они казались ему иррациональными. «Если мы собираемся сохранить эти проклятые квантовые скачки, — заявил ученый, — то я жалею, что имел дело с квантовой теорией!»
Парадоксально и то, что Э. Шредингер не сразу сам понял все значение своего открытия. Он работал тогда в семинаре известного немецкого физика П. Дебая. Руководитель семинара попросил его сделать сообщение о появившейся во французском журнале статье Л. де Бройля. Однако статья ему не понравилась, и он заявил, что о такой чепухе даже и говорить не хочется.
П. Дебай настаивал. Тогда Э. Шредингер решил представить идею Л. де Бройля в более строгой математической форме и обобщенно. Это удалось. Но то, что он получил, и оказалось знаменитым волновым уравнением (уравнение Шредингера). Оно описывало движение частиц. Как считает П. Дебай, который рассказывал об этом советскому физику П. Капице, даже во время доклада на семинаре Э. Шредингер не осознавал, какое открытие он держит в руках. Ученый искренне полагал, что нашел всего лишь лучший способ изложения мысли Л. де Бройля.
Почти одновременно с Э. Шредингером В. Гейзенберг предложил другой путь описания движения микрочастиц. С его именем связано построение так называемого матричного — в отличие от волнового — варианта квантовой механики.
Квантовые проявления в движении частиц В. Гейзенберг выразил следующим образом. Он сопоставил каждой величине, характеризующей механические состояния частицы, математическую величину в виде матрицы.
Так называется прямоугольная таблица чисел, состоящая из определенного количества строк и столбцов.
К полученным таким образом величинам применялись уже уравнения классической механики. Поскольку матрицы отличались от обычных чисел, это приводило к новым результатам.
Впоследствии оба варианта слились, и в современной квантовой механике эти два метода уже неразличимы.
Но здесь нам хотелось бы отметить, что вначале В. Гейзенберг рассматривал свою теорию как несовместимую с волновой механикой и даже обиделся на учителя М. Борна, который проявил интерес к построениям Э. Шредингера. Впрочем, Э. Шредингер платил тем же.
В этом противостоянии идей также отразилось влияние классических воззрений, не допускавших смешения волновых и дискретных свойств.
Как видим, отцы квантовой механики, создавая принципиально новую теорию, находились в плену старых воззрений. Отсюда парадоксальность положения: не только другие, но и сами создатели нового выступили против собственных идей. Они тяготели к традиционным взглядам, хотя по мере развития квантовых представлений сила этой привязанности ослабевала.
ГИПНОЗ ВЕЛИКОГО
Были рассмотрены факты, объясняющие приверженность господствующей парадигме тем, что она в свое время утверждалась как истина. А с истиной трудно расставаться.
Кроме того, у парадигмы есть еще то назначение, что она выполняет роль своего рода барьера на пути скороспелых решений. Также и по этой причине с ней не спешат проститься. Э. Ферми, в частности, считал, что новые законы следует принимать в науке не раньше, чем когда никакого иного выхода уже нет. А советскин астроном В. Шкловский предлагает ввести в космологию правило «презумпции естественности»: только после того, как все попытки естественного объяснения космического явления будут исчерпаны, можно с большой осторожностью обсуждать «искусственные» возможности.
Парадигма и встает преградой потоку легковесных и околонаучных рассуждений, она спасает знания от засорения непродуманными гипотезами и идеями. Вот только один пример. После открытия К. Рентгена каких только не было обнаружено новых лучей: лучи Гретца, Блондло, Эф-лучи… На поверку же вышло, что это плод недоразумений либо ошибок эксперимента.
И прежняя парадигма, несмотря на то, что она была поколеблена, вернее, уточнена К. Рентгеном, свою охранную роль против нашествия этих мифических лучей сыграла.
Таким образом, наука, продвигаясь от одного этапа к другому и обретая с каждым таким шагом новую истину, полагает, что она утверждается на веки вечные, что конца ей не предвидится. Истина… Какие же еще нужны гарантии?
Наряду с этим фактором (назовем его гносеологическим, то есть относящимся к области теории познания) исключительное значение обретают психологические моменты. Нам уже довелось немного сказать о них в связи с явлениями несовместимости в среде ученых.
Сейчас речь о другом.
Будучи истиной, парадигма превращается в своего рода инструмент по добыванию, обработке и описанию фактов. Так, постоянно оправдывая себя как надежная опора нашей научно-теоретической и практической деятельности, парадигма становится привычной.
С нею сживаются настолько, что и не мыслят иных возможностей, иных толкований, кроме тех, что она предлагает.
Постепенно вырабатывается психологическая установка. Проблема истинности, достоверности отходит на второй план, и парадигма признается уже по инерции, потому что ее принимают другие, потому что ее принимали до нас.
Естественно, если старое удобно, то все новое, напротив, кажется поначалу неудобным и потому отвергается. Старые москвичи рассказывают, например, что, когда в столице впервые пустили метро, многих приходилось агитировать, убеждать пользоваться им. По юн же причине некоторые пожилые работники бухгалтерии, имея на вооружении арифмометры, охотнее вычисляют на счетах.
Здесь мы имеем дело с инерцией мысли. К сожалению, она проявляется также среди ученых и бывает порой настолько сильной, что способна держать в плену мужей науки в течение целых столетий.
Советский профессор А. Силин обращает внимание на такую характерную черту нашей технологии, как необычайная живучесть однажды найденных конструкторских решений.
Скажем, отчего, имея перед глазами весьма эконОный способ передвижения рыб с помощью хвоста и плавников, люди придерживаются совсем другого, крайне неэффективного способа, каким является использование винта? Ведь коэффициент полезною действия винтовых судов очень низок. Винт не просто отталкивает воду (этого было бы вполне достаточно для создания тяги). Он к тому же закручивает встречный поток, что требует дополнительных энергетических затрат.
Человек предпочитает этот путь потому, что за ним традиция. Винт — преемник водяного колеса, которое появилось на кораблях задолго до создания пароходов и которое само определенно наследовало строение колес водяной мельницы. Изобретение же этой последней тонет в толще тысячелетни.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60