Сантехника удобный интернет-магазин 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

В одну и ту же реку, утверждал он, нельзя войти даже и один раз, ибо пока ты входишь, река уже изменится. Поэтому Кратил предлагал не называть вещи, а просто указывать на них пальцем: пока произносишь название, вещь будет уже не та.
Софистика и произрастает на искаженном понимании подвижности вещей, ловко использует гибкость отражающих мир понятий. Потому Аристотель назыяал софистику кажлщейся. а не действительной мудростью, «мнимой мудростью». А вот ее образчики, оставленные также древними авторами.
— Знаешь ли ты, о чем я хочу тебя спросить?
— Нет.
— Знаешь ли ты, что добродетель есть добро?
— Знаю.
— Вот об этом я и хотел тебя спросить.
Софизм обескураживает: дескать, возможны положения, когда человек не знает того, что он хорошо знает.
Есть примеры и похитрее. Например, софшм Эватла.
Эватл брал уроки софистики у философа Протагора на условии, что плату за обучение он внесет тогда, когда, окончив школу, выиграет свой первый процесс.
Окончил. Время шло, а Эватл и не думал браться за ведение процессов Вместе с тем считал себя свободным и от уплаты денег за учебу. Тогда Протагор пригрозил судом, заявив, что в любом случае Эватл будет платить. Если судьи присудят к уплате — то по их приговору, если же не присудят — то в силу договора. Ведь тогда Эватл выиграет свой первый процесс. Однако, обученный софистике, Эватл возразил, что при любом исходе дела он платить не станет. Если присудят к уплате, то процесс будет проиграй и согласно договору между ними он не заплатит. А если не присудят, то платить не надо уже в силу приговора суда.
Софизм построен на смешении двух моментов в рассуждении Эватла: одни и тот же договор рассматривается им в разных отношениях. В первом случае Эватл выступает на суде в качестве юриста, который проигрывает свой первый процесс. А во втором случае он уже ответчик, которого суд оправдал.
А чем не софизм сочиненная английскими студентами песенка?
Чем больше учишься, тем больше знаешь.
Чем больше знаешь, тем больше забиваешь.
А чем больше забываешь, тем меньше знаешь.
А чем меньше знаешь, тем меньше забываешь.
Но чем меньше забываешь, тем больше знаешь.
Так для чего учиться?
Пора разобраться и с самим парадоксом. Это понятие имеет такое происхождение. О слове «пара» мы уже говорили. Оно имеет также оттенок «против», а «докса» означает «мнение». Парадоксом называется странный, неожиданный результат, глубоко расходящийся с общепринятыми представлениями.
Парадокс близок паралогизму и особенно софизму.
Но от первого он отличается тем, чю выведен логически корректно, с соблюдением норм и правил логики.
С софизмом же их различает то, что парадокс — не преднамеренно пол"ченный противоречивый результат.
Таким образом, парадокс не ошибка, однако его появление нельзя объяснить и желанием сознательно исказить положение дел или незнанием какой-то детальной информации. Он коренится глубже и свидетельствует об объективно сложившемся противоречивом состоянии дел, в котором никто не виноват. Разве что сама наука, оказавшаяся бессильной распутать клубок тайн, нити которых запрятала природа. Как говорится,
Сворачивает парадокс, куда захочет, Рассудок здравый он, смеясь, морочит.
Я ЛГУ, СЛЕДОВАТЕЛЬНО, УТВЕРЖДАЮ ИСТИНУ
Наиболее выпукло странность результата являют самые точные, логически безупречные науки — математика и логика. Здесь парадокс обнаженнее, не стерт сопутствующими наслоениями. Поэтому с ним можно ближе познакомиться.
Странность парадокса в том, что выявляется внутренне противоречивая ситуация. Из признанных наукой положений следуют исключающие друг друга выводы.
То есть следуют такие два утверждения, что если одно из них истинно, то другое непременно ложно. Подобные парадоксы называют формально-логическими, поскольку они имеют строгое логическое описание.
Рассмотрим один из старейших, но нестареющих парадоксов, выявленных еще античными философами, — «парадокс лжеца». Пусть читатель простит нам столь частое обращение к древним. Право же, они заслужили этого. Как сказал профессор Д. Литтльвуд, один из крупнейших английских математиков современности, «греки — это не способные школьники или хорошие студенты, но скорее коллеги из другого учебного заведения».
Итак, о «парадоксе лжеца». Истину или ложь утверждает человек, который говорит «я лгу», и больше ничего не говорит? С одной стороны, он лжет, поскольку заявляет об этом. А с другой стороны, если он лжет и говорит, что лжет, значит, он утверждает истину.
Вообще, имеется немало разновидностей этого парадокса. Вот, к примеру, вариант Эвбулида:
Критянин Эпименид сказал: «Все критяне лжецы».
Эпименид сам критянин.
Следовательно, он лжец.
Но если Эпимениц лгун, тогда его заявление, что все критяне Лгуны — ложно. Значит, критяне не лгуны.
Между тем Эпименид, как определено условием, — критянин, следовательно, он не лгун, и поэтому его утверждение «все критяне лгуны» — истинно.
Таким образом, мы пришли к взаимоисключающим предложениям. Одно из них утверждает, что высказывание «все критяне лгуны», является ложным, а другое, наоборот, квалифицирует это же высказывание как истинное. Притом как в одном, так и в другом случае наши рассуждения логически строги, в них нет ни намеренных, ни непреднамеренных ошибок. Так где же истина?
Было приложено немало усилий объяснить этот странный результат. Имеется, например, такое решение.
Почему мы должны считать, что Эпименид говорит одну только ложь и никогда не говорит правды? Точно так же тот, кто считается правдивым, разве всегда утверждает лишь правду? В практике общения ложное обычно перемешано с истиной, и мы не найдем такого отпетого лгуна, который только бы лгал. Его легко изобличить, и тогда понимай все, что им сказано, наоборот.
В действительности, однако, положение гораздо сложнее. Не зря же парадоксу посвящена столь обширная литература. Он на самом деле вызывает недоумение, этот неожиданный результат. Легенда утверждает даже, что древнегреческий философ Кронос, испытав неудачу в попытках решить парадокс, от огорчения умер, а еще один философ, Филипп Косский, покончил жизнь самоубийством.
С тех пор внимание к парадоксу лжеца, по существу, не затухало. Оно лишь принимало новые формы, обнаруживало новые оттенки. Особенно сильная волна интереса к нему, как и другим парадоксам, была вызвана событиями, разыгравшимися в математике на рубеже XIX-XX столетий. На этот раз к парадоксам подошли основательнее, во всеоружии достижений логики, математики и философии, полученных к тому времени. Более подробный разговор ожидает нас чуть впереди.
Наряду с формально-логическими выделяют парадоксы, описываемые содержательно. Имеются в виду тоже противоречивые, неожиданные результаты, вьнвпнные соответствующими противоречивыми обстоятельствами. В их числе, например, так называемые «неклассические состояния», то есть явления, которые необъяснимы с позиции современного им уровня развития науки. Так, уже к случае простою механического движения тело, поскольку оно движется, в каждый определенный момент времени находится в данной точке и не находится в ней, находится в данной точке и одновременно в другой точке. Потому что, если бы тело пребывало только в одном месте, оно так и оставалось бы в нем, то есть покоилось.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 дорогая сантехника для ванной 

 Porcelanosa Forest Par-ker