В. Тимофеевым-Ресовским и К. Циммером). Здесь уже принципом неопределенности пренебрегать нельзя. О том, что для описания мутагенеза необходимо использовать принцип Гейзенберга, писали еще Н. В. Тимофеев-Ресовский и Паскуаль Йордан в 40-х годах. В последнее время то же утверждает и Манфред Эйген. Короче, мы можем лишь с некоторой долей вероятия предполагать, обладает ли частица нужной для мутации энергией и попадет ли она в зону эффективного объема.
Не только принцип Гейзенберга – любое другое положение квантовой механики делает процесс мутагенеза вероятностным. Вот еще пара примеров. Кроме стабильных атомов углерода и фосфора в состав ДНК могут входить их радиоактивные изотопы. Вероятность этого возрастает с увеличением радиоактивного фона нашей планеты. Местоположение атомов C14 и P32 в нитях ДНК, разумеется, случайно. А радиоактивный распад – тоже случайный процесс: знать, какой из атомов в данный момент распадется и вызовет мутацию, нам не дано, и запрет этот принципиальный.
Наконец, есть мутации, не индуцированные каким-нибудь внешним по отношению к ДНК агентом, а так называемые спонтанные. Водородные связи, скрепляющие двойную спираль ДНК, обусловлены ионами водорода (протонами). Если при раскручивании спирали ДНК, которое обязательно происходит при ее репликации, оба протона перейдут к одному из оснований, возможны другие комбинации, кроме АТ и ГЦ. А неверное спаривание оснований – мутация. Переход протона от одного основания к другому называется туннельным, описывается уравнениями квантовой механики, и все, что мы можем сказать о нем, то, что он осуществляется с частотой 1011…1012в секунду. Время и место каждой единичной спонтанной мутации непредсказуемо принципиально.
А что же вещества, изменяющие структуру гена, – мутагены? Впервые в 1932–1934 годах советские ученые В. В. Сахаров и М. Е. Лобашов независимо друг от друга получили мутации у дрозофилы, действуя на мушек йодом и рядом других веществ. С того времени список мутагенов возрос тысячекратно, теперь каждое химическое соединение, которое предполагается внедрять в практику (лекарства, красители, пластмассы и т. д.), испытывается на мутагенный эффект. Открыты – И. А. Рапопортом и Ш. Ауэрбах – так называемые супермутагены, вызывающие мутации у 100 процентов обработанных ими особей.
Может показаться, что химические мутагены не имеют особого значения в природе, во всяком случае до появления химической промышленности. Простой пример свидетельствует, что это не так. Даже такое, с позволения сказать, вещество, как ион водорода, может индуцировать мутации.
Активная реакция среды измеряется, как вы знаете, в единицах pH . Это взятый с обратным знаком логарифм концентрации водородных ионов. Например, когда реакция нейтральная, pH равно семи и концентрация ионов водорода 10-7моля. ДНК довольно устойчива к подкислению или подщелачиванию, однако при pH ниже четырех начинается отщепление пуриновых оснований – гуанина и аденина.
Содержимое клетки в общем-то сильная буферная система, поддерживающая pH в районе семи (это не относится к специализированным органам вроде желудка, где высока концентрация соляной кислоты, или же слюнных желез некоторых улиток, которые могут выделять довольно концентрированную серную кислоту). Но вспомним о размерах клеток и обязательных флуктуациях молекул. Объем бактериальной клетки всего 2•10-12см3, значит, при pH = 7 в ней всего примерно 120 водородных ионов. А это означает, что очень вероятна флуктуация: ионы водорода соберутся около, например, гуанина и отщепят его от пентознофосфатного остова ДНК. Произойдет мутация, и опять же случайным, непредсказуемым образом.
На этом можно было бы и закончить обзор изменений генетических программ. Но хотелось бы рассказать о недавно открытых хромосомных перестройках, удивительных и ранее казавшихся невозможными.
Сначала в геномах бактерий, а потом и в геномах высших организмов обнаружили удивительные «кусочки» ДНК, которые могут перемещаться с места на место в хромосоме. Их образно назвали прыгающими, генами. Различают две категории таких последовательностей. Есть короткие (500–1500 пар нуклеотидов) и длинные (более двух тысяч). Они могут вычленяться из единственной хромосомы бактерии (этот процесс называется эксцизией, выстриганием) и встраиваться в нее в другом месте (инсерция). И не только в хромосому, прыгающие гены могут включаться в плазмиды – последовательности ДНК, существующие в бактериальной клетке независимо. Так же легко прыгающие гены могут встраиваться в геномы бактериофагов. Удивительного в этом ничего нет: существует вполне убедительное мнение о том, что плазмиды – «домашние», прирученные бактерией фаги.
Короткие инсерционные сегменты обладают многими удивительными свойствами. Почему-то оба конца их состоят из одинаковых последовательностей. Иногда же концевые участки перевервуты: на одном конце, например, АТГАГ, на другом – ГАГТА. Встраиваясь в ген, они часто блокируют процесс транкрипции – ген теряет активность. И наоборот, встраиваясь в перевернутом виде, они могут тот же ген активировать. Иными словами, они включают и выключают гены.
Еще более удивительны длинные прыгающие последовательности транспозоны. Именно они, встраиваясь в фаги, переносят от бактерии к бактерии гены устойчивости к антибиотикам. Так что фаги не только могут убивать бактерии или быть их «приживальщиками». Они переносят в мире микроорганизмов генетическую информацию. Так, насекомые не только вредят растениям, но и опыляют их. Ведь первые цветковые растения опылялись ветром. На их пыльниках кормилось много насекомых. Перепачканные пыльцой жуки и примитивные бабочки перелетали с пыльника на пыльник, и в результате возникли такие пары «растение – насекомое», которые не могут существовать друг без друга. Юкка, например, не может опыляться иначе как с помощью юкковой моли. И между фагом, лизирующим, «пожирающим» бактерию, фагом-«приживальщиком» и приносящей пользу плазмидой, которая переносит транспозоны, есть все переходные ступени.
Прыгающие гены описаны и у высших, ядерных организмов. У дрожжевых грибков они, например, в зависимости от положения в хромосоме, определяют пол клетки. Обнаружили их также у кукурузы и дрозофилы. Вот на последнем объекте хотелось бы остановиться подробнее.
Генетиков давно занимали случаи, когда гены в популяциях плодовой мушки-дрозофилы вдруг теряли стабильность и частота мутаций возрастала во много раз. Оказалось, что нестабильность того или иного гена обусловливается встроившимся в него инсерционным сегментом. В некоторых случаях удалось проследить, как прыгающий ген в течение нескольких лет кочует от одного участка хромосомы к другому и от одной хромосомы к другой, каждый раз вызывая новую мутацию. Шведские ученые Г. Исинг и К. Рамель проследили до сорока прыжков одной такой инсерции. Результатом была или полная инактивация гена, приводящая к смерти (летальная мутация), или же мутации «розовые глаза», «грубые глаза» (с неправильным расположением фасеток) и целый ряд других.
Такие феномены наблюдались не только в экспериментальных, рассаженных по пробиркам популяциях дрозофилы, но и в природе. Известны так называемые «модные» мутации.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Не только принцип Гейзенберга – любое другое положение квантовой механики делает процесс мутагенеза вероятностным. Вот еще пара примеров. Кроме стабильных атомов углерода и фосфора в состав ДНК могут входить их радиоактивные изотопы. Вероятность этого возрастает с увеличением радиоактивного фона нашей планеты. Местоположение атомов C14 и P32 в нитях ДНК, разумеется, случайно. А радиоактивный распад – тоже случайный процесс: знать, какой из атомов в данный момент распадется и вызовет мутацию, нам не дано, и запрет этот принципиальный.
Наконец, есть мутации, не индуцированные каким-нибудь внешним по отношению к ДНК агентом, а так называемые спонтанные. Водородные связи, скрепляющие двойную спираль ДНК, обусловлены ионами водорода (протонами). Если при раскручивании спирали ДНК, которое обязательно происходит при ее репликации, оба протона перейдут к одному из оснований, возможны другие комбинации, кроме АТ и ГЦ. А неверное спаривание оснований – мутация. Переход протона от одного основания к другому называется туннельным, описывается уравнениями квантовой механики, и все, что мы можем сказать о нем, то, что он осуществляется с частотой 1011…1012в секунду. Время и место каждой единичной спонтанной мутации непредсказуемо принципиально.
А что же вещества, изменяющие структуру гена, – мутагены? Впервые в 1932–1934 годах советские ученые В. В. Сахаров и М. Е. Лобашов независимо друг от друга получили мутации у дрозофилы, действуя на мушек йодом и рядом других веществ. С того времени список мутагенов возрос тысячекратно, теперь каждое химическое соединение, которое предполагается внедрять в практику (лекарства, красители, пластмассы и т. д.), испытывается на мутагенный эффект. Открыты – И. А. Рапопортом и Ш. Ауэрбах – так называемые супермутагены, вызывающие мутации у 100 процентов обработанных ими особей.
Может показаться, что химические мутагены не имеют особого значения в природе, во всяком случае до появления химической промышленности. Простой пример свидетельствует, что это не так. Даже такое, с позволения сказать, вещество, как ион водорода, может индуцировать мутации.
Активная реакция среды измеряется, как вы знаете, в единицах pH . Это взятый с обратным знаком логарифм концентрации водородных ионов. Например, когда реакция нейтральная, pH равно семи и концентрация ионов водорода 10-7моля. ДНК довольно устойчива к подкислению или подщелачиванию, однако при pH ниже четырех начинается отщепление пуриновых оснований – гуанина и аденина.
Содержимое клетки в общем-то сильная буферная система, поддерживающая pH в районе семи (это не относится к специализированным органам вроде желудка, где высока концентрация соляной кислоты, или же слюнных желез некоторых улиток, которые могут выделять довольно концентрированную серную кислоту). Но вспомним о размерах клеток и обязательных флуктуациях молекул. Объем бактериальной клетки всего 2•10-12см3, значит, при pH = 7 в ней всего примерно 120 водородных ионов. А это означает, что очень вероятна флуктуация: ионы водорода соберутся около, например, гуанина и отщепят его от пентознофосфатного остова ДНК. Произойдет мутация, и опять же случайным, непредсказуемым образом.
На этом можно было бы и закончить обзор изменений генетических программ. Но хотелось бы рассказать о недавно открытых хромосомных перестройках, удивительных и ранее казавшихся невозможными.
Сначала в геномах бактерий, а потом и в геномах высших организмов обнаружили удивительные «кусочки» ДНК, которые могут перемещаться с места на место в хромосоме. Их образно назвали прыгающими, генами. Различают две категории таких последовательностей. Есть короткие (500–1500 пар нуклеотидов) и длинные (более двух тысяч). Они могут вычленяться из единственной хромосомы бактерии (этот процесс называется эксцизией, выстриганием) и встраиваться в нее в другом месте (инсерция). И не только в хромосому, прыгающие гены могут включаться в плазмиды – последовательности ДНК, существующие в бактериальной клетке независимо. Так же легко прыгающие гены могут встраиваться в геномы бактериофагов. Удивительного в этом ничего нет: существует вполне убедительное мнение о том, что плазмиды – «домашние», прирученные бактерией фаги.
Короткие инсерционные сегменты обладают многими удивительными свойствами. Почему-то оба конца их состоят из одинаковых последовательностей. Иногда же концевые участки перевервуты: на одном конце, например, АТГАГ, на другом – ГАГТА. Встраиваясь в ген, они часто блокируют процесс транкрипции – ген теряет активность. И наоборот, встраиваясь в перевернутом виде, они могут тот же ген активировать. Иными словами, они включают и выключают гены.
Еще более удивительны длинные прыгающие последовательности транспозоны. Именно они, встраиваясь в фаги, переносят от бактерии к бактерии гены устойчивости к антибиотикам. Так что фаги не только могут убивать бактерии или быть их «приживальщиками». Они переносят в мире микроорганизмов генетическую информацию. Так, насекомые не только вредят растениям, но и опыляют их. Ведь первые цветковые растения опылялись ветром. На их пыльниках кормилось много насекомых. Перепачканные пыльцой жуки и примитивные бабочки перелетали с пыльника на пыльник, и в результате возникли такие пары «растение – насекомое», которые не могут существовать друг без друга. Юкка, например, не может опыляться иначе как с помощью юкковой моли. И между фагом, лизирующим, «пожирающим» бактерию, фагом-«приживальщиком» и приносящей пользу плазмидой, которая переносит транспозоны, есть все переходные ступени.
Прыгающие гены описаны и у высших, ядерных организмов. У дрожжевых грибков они, например, в зависимости от положения в хромосоме, определяют пол клетки. Обнаружили их также у кукурузы и дрозофилы. Вот на последнем объекте хотелось бы остановиться подробнее.
Генетиков давно занимали случаи, когда гены в популяциях плодовой мушки-дрозофилы вдруг теряли стабильность и частота мутаций возрастала во много раз. Оказалось, что нестабильность того или иного гена обусловливается встроившимся в него инсерционным сегментом. В некоторых случаях удалось проследить, как прыгающий ген в течение нескольких лет кочует от одного участка хромосомы к другому и от одной хромосомы к другой, каждый раз вызывая новую мутацию. Шведские ученые Г. Исинг и К. Рамель проследили до сорока прыжков одной такой инсерции. Результатом была или полная инактивация гена, приводящая к смерти (летальная мутация), или же мутации «розовые глаза», «грубые глаза» (с неправильным расположением фасеток) и целый ряд других.
Такие феномены наблюдались не только в экспериментальных, рассаженных по пробиркам популяциях дрозофилы, но и в природе. Известны так называемые «модные» мутации.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42