вешалка напольная для полотенец в ванную 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Так что в принципе можно рассчитывать энергию и энтропию системы и предсказывать ее будущее с весьма высокой точностью, как только мы будем оперировать с достаточно большим количеством молекул. Но опять же только в принципе.
Вот пример, близкий каждому. Прогноз погоды, строго говоря, типичная термодинамическая задача. Не приходится говорить о важности прогнозирования погоды и огромных усилиях, которые вкладываются в него. А вот всегда ли эти прогнозы сбываются? Причина та же: невозможно практически учесть все факторы и провести расчеты в обозримые сроки. Детерминизм опять оказывается ограниченным случайностью, это так называемый стохастический детерминизм.
И совсем другое положение в попытках прогнозировать развитие живой природы. В объеме газа случайные флуктуации компенсируют друг друга, на первый план выступает среднее значение. В популяции живых организмов случайное, непредсказуемое изменение генетической программы, усиливаясь в миллиарды миллиардов раз, изменяет состояние всей системы. Вспомните о принципе усиления! Еще один эффектный его пример. В начале 1918 года где-то во Франции квант ультрафиолетового излучения попал на взвешенную в воздухе вирусную частицу – вирион гриппа. Так, а может быть, и иначе, произошла мутация, возник новый штамм вируса, против которого были бессильны защитные системы человеческого организма. Вспыхнула эпидемия, быстро перекинувшаяся на Испанию, оттуда, под названием «испанки» – на весь мир. Смертность достигала 30 процентов, и в результате всемирная эпидемия (пандемия) унесла 20 миллионов человек – много больше, чем первая мировая война.
В пандемии гриппа 1972–1973 годов смертность, к счастью, была не так велика. Но переболело на Земле в то время около двух с половиной миллиардов людей. Нарушение многих планов, отрицательное воздействие на экономику всей планеты, и все это – следствие одного-единственного квантового скачка.
Вывод прост: из-за усиления в фенотипах случайных изменений генетических программ эволюция живой природы принципиально непредсказуема. Наивный детерминизм здесь терпит полный крах. И все, что мы можем предсказать, – это то, что демон Дарвина размножит в будущих поколениях потомков тех особей, которые наилучшим образом будут приспособлены к окружающим их условиям А вот как они будут приспособлены, об этом мы можем только гадать.
Далеко не всем это нравится. Приходится слышать и такие высказывания: современная теория эволюции, объединяющая дарвинизм и генетику, несостоятельна, ибо она может все объяснить задним числом, но ничего не может предсказать. Будь создана теория направленной, номогенетической эволюции, эти недостатки были бы устранены. На мой взгляд, это равносильно утверждению: будь открыт вечный двигатель, с топливным кризисом было бы покончено.
Так что, если мы не желаем отлучить биологию от физики, мы должны признать принципиальную непредсказуемость эволюционных процессов. Кое-что можно предугадать, но это будет достаточно тривиальный прогноз.
Внедряя в практику медицины новый антибиотик, мы с достаточной долей уверенности можем прогнозировать, что он тогда-то потеряет эффективность, микроорганизмы, против которых он направлен, когда-нибудь к нему приспособятся, то есть будут переносить его концентрации, прежде абсолютно для них смертельные. Но вот когда и как? Приспособление может возникнуть разными путями. Один из ферментов бактерии окажется способным к гидролизу антибиотика, повысится непроницаемость оболочки бактерии – это нам знать не дано, ибо это равносильно знанию, когда и в каком месте произойдет событие на квантовом уровне.
Или же другая важная проблема – вредные насекомые и инсектициды. Действуя ДДТ на экспериментальную популяцию мух, легко вывести линию, переносящую без ущерба для себя в сто раз большую концентрацию яда. Но в одной линии это произойдет, потому что ДДТ будет обезвреживаться в мушином организме, в другой – повысится непроницаемость хитинового покрова. Можно, наконец, вывести мух с безусловным рефлексом избегания отравленных поверхностей.

Рис. 46. Жюль-верновский капитан Немо придал своему «Наутилусу» сигарообразную форму, наиболее оптимальную для быстрого движения в воде. Природа использовала этот принцип много раньше. 1 – акула,
2– ихтиозавр,
З, 4 – разные виды дельфинов.
Хрящевая рыба, пресмыкающееся и млекопитающие, вторично вернувшиеся в воду, обрели форму, близкую к сигарообразной. Естественный отбор как бы стесал все выступы тела, тормозившие движение.
Иногда эволюция кажется направленной, жестко детерминированной. Дельфин, вымерший ихтиозавр и акула очень похожи по форме друг на друга и каждый из них – на подводную лодку. Но зададимся вопросом: а какая еще форма будет отобрана демоном Дарвина для быстрого движения в воде? На некоторые задачи, поставленные перед эволюцией, может быть дан только один ответ.
Значит, все-таки результаты эти предсказуемы? Не спешите с ответом: предсказуемость отнюдь не стопроцентная. Вот пример, который можно бы назвать: «Эссе об акульем хвосте». На хвостовом стебле акул (и других быстрых рыб) по бокам расположены кили, отчего в сечении они имеют обтекаемую форму. Такие же кили есть и на хвостовом стебле дельфина, но не по бокам, а сверху и снизу. Понятно почему: у рыб хвостовые лопасти расположены вертикально, а у китов – горизонтально. Этого мало: у акул на нижней стороне хвостового стебля есть поперечная ложбинка. Для чего она, неясно. Тур Хейердал писал, что она для того, чтобы акулу можно было удобнее схватить за хвост. Это, конечно, шутка. Наверное, ложбинка как-то улучшает гидродинамические свойства хвоста. Такие же ложбинки есть и у дельфинов, но по бокам хвостового стебля. Так вот, можно ли предсказать, как расположатся хвостовые лопасти у животного, потомки которого перейдут к быстрому плаванию: вертикально, как у рыб и ихтиозавров или же горизонтально, как у китообразных?
Наконец, у акул последний отдел позвоночника продолжается в верхнюю лопасть хвостового плавника, а у ихтиозавров – в нижнюю.
Смогли бы вы, оказавшись в силурийском периоде, прогнозировать этот результат? Так что даже если ответ один, модификаций его может быть много; столько же, сколько раз решалась в эволюции эта задача.

Рис. 42. Как копытному животному добраться до листьев на высоких деревьях? В процессе эволюции разные животные решали эту проблему по-разному. Самый простой, но не самый выгодный путь избрали гигантские безрогие носороги третичного периода – индрикотерий, белуджитерий и близкие формы. На рисунке реконструкция индрикотерия (Индрик-зверь, царь зверей старорусских преданий) и для масштаба – современный индийский носорог. Такая махина могла легко дотянуться до высоко расположенных веток, но и прокормить ее было трудно. Поэтому гигантские носороги самые крупные наземные млекопитающие – вымерли, не оставив потомства.
Иногда же ответов несколько, причем они отнюдь не равноценны. Вот хороший пример. Представьте разреженный лес или саванну, где трава выжигается солнцем. У крупных копытных в этой зоне есть хороший источник питания – листва деревьев. Но как до нее добраться? Самый прямой ответ – отбор на увеличение размеров тела.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
 https://sdvk.ru/Sanfayans/Unitazi/ 

 Керамика Классик Serenity