– Б. М.).
Прошу извинения у читателей за длинную цитату: на мой взгляд, в ней удачно подчеркивается необходимость неких абстрагированных заключений (которые я назвал аксиомами, но не в слове суть: назовите их постулатами, принципами, положениями, в конце концов, русский язык достаточно богат). Кроме того, формулируются условия, которым должны соответствовать наши аксиомы.
1. Хотя они (аксиомы) выводятся на молекулярном уровне (деление организма на генотип и фенотип, матрицирование генотипа, ошибки матрицирования, усиление ошибок, делающее их доступным отбору), с их помощью можно познать более сложные уровни биологической организации.
2. Они должны быть всеобщими, проявляться на всех уровнях и во всех случаях. Частные закономерности должны выводиться из них, как теоремы из аксиом. И включение в систему аксиом «лишней», не работающей на всех уровнях, такая же, если не худшая, ошибка, как включение неверной, не обоснованной фактами и противоречащей принципам физики и химии.
С этой точки зрения рассмотрим вопрос: достаточна ли наша система аксиом, не следует ли чего-либо добавить к ней? Признаюсь, что для меня этот вопрос проклятый, я ломал голову над ним годами. Остановлюсь для примера на положении, которое чуть было не стало пятой аксиомой. Его можно было бы выразить двумя словами: генетическая рекомбинация.
Генетическая рекомбинация – обмен частями генетических программ – возникла, по-видимому, на чрезвычайно ранней стадии становления жизни. У самых простейших организмов – бактериофагов – описан сложный процесс обмена кусками ДНК. После заражения бактериальной клетки фагом в ней образуется 30–50 копий молекул ДНК, реплицированных с материнской молекулы, впрыснутой в бактерию.
Дочерние молекулы могут спариваться, сближаться гомологичными частями; затем в зонах спаривания происходят разрывы нитей ДНК, обмен скрещенными участками и последующая сшивка. Все это очень напоминает хорошо известный генетикам перекрест хромосом у высших организмов – кроссинговер, при котором хромосомы обмениваются гомологичными частями. В результате, если в одной молекуле ДНК произошла одна мутация, а в другой – другая, они могут объединиться в генетической программе фага и совместно попасть под действие отбора.
Скорее всего, механизм этот развился из репарации, о которой мы здесь говорили. Репарационные ферменты – лигазы – сшивают разорванные жестким излучением или иным мутагеном нити ДНК, восстанавливают целостность генетической программы. А так как в одной клетке несколько десятков фаговых ДНК, то высока вероятность объединения частей разных молекул. Рекомбинация оказалась выгодной, допускающей объединение генетических изменений у разных организмов.
У бактерий перенос генетической информации осуществляется от клетки к клетке непосредственно кусками ДНК (трансформация), в результате изучения этого процесса и была доказана роль ДНК как субстрата наследственности. Часто гены переносятся от бактерии к бактерии фагами, фаг может прихватить кусок ДНК хозяина и передать его в новом поколении другому. Этот процесс называется трансдукцией. Обычно ее осуществляют плазмиды, «ручные» фаги, ставшие симбионтами бактерий и не убивающие хозяина интенсивным размножением. Из подобных механизмов у бактерий в конце концов развился оригинальный половой процесс конъюгация. При нем клетки соприкасаются, между ними образует цитоплазматический мостик по которому нить ДНК перетекает из одной бактерии в другую. Любопытно, что для передачи генного материала бактерия должна иметь внехромосомный генетический элемент, названный фактором F , который, возможно, потомок плазмиды. Не имеющие его штаммы (F – ) могут только принимать чужую ДНК (аналогия между самками и самцами у высших животных; кстати, «самцов» то есть имеющих фактор F , довольно мало: у кишечной палочки их в десять раз меньше, чем «самок»). Плазмида, ведущая происхождение от фага, может вообще стать частью бактериальной хромосомы, тогда она называется эписомой. Также и F – фактор, включаясь в геном бактерий, повышает их способность к конъюгации в тысячу раз.
Из школьного курса общей биологии вы должны знать, что генетическая рекомбинация у высших организмов гораздо сложнее. И у них есть кроссинговер. Но в отличие от бактерий геном у них настолько велик, что не может быть объединен в одной хромосоме.
Ядерные организмы – эукариоты – имеют в клетках от двух (у малярийного плазмодия и лошадиной аскариды) до тысячи и более хромосом, «томов» генетических программ. Перед каждым делением клетки генетические программы реплицируются. Однако так бывает не всегда. Перед наступлением полового процесса происходит мейоз – редукционное деление. Хромосомы при нем не делятся, а расходятся по клеткам, из которых потом формируются половые. Так, у человека в норме 46 хромосом из них две половые, остальные 44 идентичны у обоих полов (аутосомы). 23 хромосомы человек получает от отца, 23 – от матери, а каково сочетание отцовских и материнских хромосом в яйцеклетке или спермии – это дело случая. Число сочетаний здесь равно двум в степени n – числу хромосом в гамете. Отсюда следует, что, например, у дрозофилы с ее четырьмя хромосомами в гамете число вариантов гамет 24 = 16, у кролика 222 = 4 385 000. Предоставляю читателям самим прикинуть число вариантов гамет у папоротника (количество хромосом в гамете 630). Слияние половых клеток восстанавливает прежнее количество хромосом возникает новая генетическая программах с которой организм входит в жизнь. При смене поколений эти программы рассыпаются чтобы заново возникли другие. Генетическая рекомбинация непрерывно тасует их, как карты, поставляя отбору поистине неисчерпаемый материал. Здесь есть и отрицательная сторона: какая-нибудь сверхудачная комбинация хромосом бесследно исчезает в новом поколении, у гениальных родителей появляются заурядные дети.
По-видимому, этот великий по простоте механизм рекомбинации возник в процессе эволюции только один раз. У человека и сосны, инфузории и дрожжевого грибка половые ядра, сливающиеся впоследствии, возникают одинаковым путем: ядро с нормальным набором хромосом не разделяясь реплицирует их, так что образуется четыре набора генетических программ. Затем клетка (или только ядро у инфузорий) дважды делится, получаются четыре клетки с половинным, гаплоидным набором. Часто, особенно при формировании яйцеклеток, три из них рассасываются, дальнейшее развитие суждено только одной. Лишь немногие панцирные жгутиковые имеют одноступенчатое редукционное деление; у них это, скорее всего, вторичное упрощение.
Так, может быть, объявим генетическую рекомбинацию непреложным законом живого, пятой аксиомой? Увы, дело обстоит не столь просто. Многие организмы потеряли способность к генетической рекомбинации и благоденствуют, мы не имеем права исключать их из мира живого. Таковы всем известные амебы и инфузории потерявшие способность образовывать половое ядро, все формы, размножающиеся партеногенетическим путем, без оплодотворения (а их многие тысячи – от простейших до некоторых пород индеек). Наконец, так называемые апомиктические растения, образующие семена из нормальных, диплоидных клеток с двойным набором хромосом, хотя бы одуванчики, каждую весну золотым потопом заливающие наши газоны.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Прошу извинения у читателей за длинную цитату: на мой взгляд, в ней удачно подчеркивается необходимость неких абстрагированных заключений (которые я назвал аксиомами, но не в слове суть: назовите их постулатами, принципами, положениями, в конце концов, русский язык достаточно богат). Кроме того, формулируются условия, которым должны соответствовать наши аксиомы.
1. Хотя они (аксиомы) выводятся на молекулярном уровне (деление организма на генотип и фенотип, матрицирование генотипа, ошибки матрицирования, усиление ошибок, делающее их доступным отбору), с их помощью можно познать более сложные уровни биологической организации.
2. Они должны быть всеобщими, проявляться на всех уровнях и во всех случаях. Частные закономерности должны выводиться из них, как теоремы из аксиом. И включение в систему аксиом «лишней», не работающей на всех уровнях, такая же, если не худшая, ошибка, как включение неверной, не обоснованной фактами и противоречащей принципам физики и химии.
С этой точки зрения рассмотрим вопрос: достаточна ли наша система аксиом, не следует ли чего-либо добавить к ней? Признаюсь, что для меня этот вопрос проклятый, я ломал голову над ним годами. Остановлюсь для примера на положении, которое чуть было не стало пятой аксиомой. Его можно было бы выразить двумя словами: генетическая рекомбинация.
Генетическая рекомбинация – обмен частями генетических программ – возникла, по-видимому, на чрезвычайно ранней стадии становления жизни. У самых простейших организмов – бактериофагов – описан сложный процесс обмена кусками ДНК. После заражения бактериальной клетки фагом в ней образуется 30–50 копий молекул ДНК, реплицированных с материнской молекулы, впрыснутой в бактерию.
Дочерние молекулы могут спариваться, сближаться гомологичными частями; затем в зонах спаривания происходят разрывы нитей ДНК, обмен скрещенными участками и последующая сшивка. Все это очень напоминает хорошо известный генетикам перекрест хромосом у высших организмов – кроссинговер, при котором хромосомы обмениваются гомологичными частями. В результате, если в одной молекуле ДНК произошла одна мутация, а в другой – другая, они могут объединиться в генетической программе фага и совместно попасть под действие отбора.
Скорее всего, механизм этот развился из репарации, о которой мы здесь говорили. Репарационные ферменты – лигазы – сшивают разорванные жестким излучением или иным мутагеном нити ДНК, восстанавливают целостность генетической программы. А так как в одной клетке несколько десятков фаговых ДНК, то высока вероятность объединения частей разных молекул. Рекомбинация оказалась выгодной, допускающей объединение генетических изменений у разных организмов.
У бактерий перенос генетической информации осуществляется от клетки к клетке непосредственно кусками ДНК (трансформация), в результате изучения этого процесса и была доказана роль ДНК как субстрата наследственности. Часто гены переносятся от бактерии к бактерии фагами, фаг может прихватить кусок ДНК хозяина и передать его в новом поколении другому. Этот процесс называется трансдукцией. Обычно ее осуществляют плазмиды, «ручные» фаги, ставшие симбионтами бактерий и не убивающие хозяина интенсивным размножением. Из подобных механизмов у бактерий в конце концов развился оригинальный половой процесс конъюгация. При нем клетки соприкасаются, между ними образует цитоплазматический мостик по которому нить ДНК перетекает из одной бактерии в другую. Любопытно, что для передачи генного материала бактерия должна иметь внехромосомный генетический элемент, названный фактором F , который, возможно, потомок плазмиды. Не имеющие его штаммы (F – ) могут только принимать чужую ДНК (аналогия между самками и самцами у высших животных; кстати, «самцов» то есть имеющих фактор F , довольно мало: у кишечной палочки их в десять раз меньше, чем «самок»). Плазмида, ведущая происхождение от фага, может вообще стать частью бактериальной хромосомы, тогда она называется эписомой. Также и F – фактор, включаясь в геном бактерий, повышает их способность к конъюгации в тысячу раз.
Из школьного курса общей биологии вы должны знать, что генетическая рекомбинация у высших организмов гораздо сложнее. И у них есть кроссинговер. Но в отличие от бактерий геном у них настолько велик, что не может быть объединен в одной хромосоме.
Ядерные организмы – эукариоты – имеют в клетках от двух (у малярийного плазмодия и лошадиной аскариды) до тысячи и более хромосом, «томов» генетических программ. Перед каждым делением клетки генетические программы реплицируются. Однако так бывает не всегда. Перед наступлением полового процесса происходит мейоз – редукционное деление. Хромосомы при нем не делятся, а расходятся по клеткам, из которых потом формируются половые. Так, у человека в норме 46 хромосом из них две половые, остальные 44 идентичны у обоих полов (аутосомы). 23 хромосомы человек получает от отца, 23 – от матери, а каково сочетание отцовских и материнских хромосом в яйцеклетке или спермии – это дело случая. Число сочетаний здесь равно двум в степени n – числу хромосом в гамете. Отсюда следует, что, например, у дрозофилы с ее четырьмя хромосомами в гамете число вариантов гамет 24 = 16, у кролика 222 = 4 385 000. Предоставляю читателям самим прикинуть число вариантов гамет у папоротника (количество хромосом в гамете 630). Слияние половых клеток восстанавливает прежнее количество хромосом возникает новая генетическая программах с которой организм входит в жизнь. При смене поколений эти программы рассыпаются чтобы заново возникли другие. Генетическая рекомбинация непрерывно тасует их, как карты, поставляя отбору поистине неисчерпаемый материал. Здесь есть и отрицательная сторона: какая-нибудь сверхудачная комбинация хромосом бесследно исчезает в новом поколении, у гениальных родителей появляются заурядные дети.
По-видимому, этот великий по простоте механизм рекомбинации возник в процессе эволюции только один раз. У человека и сосны, инфузории и дрожжевого грибка половые ядра, сливающиеся впоследствии, возникают одинаковым путем: ядро с нормальным набором хромосом не разделяясь реплицирует их, так что образуется четыре набора генетических программ. Затем клетка (или только ядро у инфузорий) дважды делится, получаются четыре клетки с половинным, гаплоидным набором. Часто, особенно при формировании яйцеклеток, три из них рассасываются, дальнейшее развитие суждено только одной. Лишь немногие панцирные жгутиковые имеют одноступенчатое редукционное деление; у них это, скорее всего, вторичное упрощение.
Так, может быть, объявим генетическую рекомбинацию непреложным законом живого, пятой аксиомой? Увы, дело обстоит не столь просто. Многие организмы потеряли способность к генетической рекомбинации и благоденствуют, мы не имеем права исключать их из мира живого. Таковы всем известные амебы и инфузории потерявшие способность образовывать половое ядро, все формы, размножающиеся партеногенетическим путем, без оплодотворения (а их многие тысячи – от простейших до некоторых пород индеек). Наконец, так называемые апомиктические растения, образующие семена из нормальных, диплоидных клеток с двойным набором хромосом, хотя бы одуванчики, каждую весну золотым потопом заливающие наши газоны.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42