Позже эти данные подтвердились и на наркотизированных обезь-36
янах. Другие исследователи уже на ненаркотизированных животных (макаках, кошках, крысах) также представили дополнительные доказательства колончатой организации коры.
В. Маунткасл (1981. С. 26), формулируя основные положения своей теории о колончатой организации коры, отмечал, что «основной единицей активности в новой коре служит вертикально расположенная группа клеток с множеством связей между этими клетками по вертикальной оси и малым их числом в горизонтальном направлении». Кортикальная колонка представляет собой обрабатывающее устройство со входом и выходом. Расположение в виде колонок делает возможным картирование одновременно нескольких переменных на двухмерной матрице поверхности коры. Между корковыми колонками и их группами существуют специфические связи.
Благодаря работам Д. Хьюбела и Т. Визеля сегодня мы более детально представляем колончатую организацию зрительной коры. Исследователи используют термин «колонка», предложенный В. Маунткаслом, но отмечают, что наиболее подходящим был бы термин «пластина». Говоря о колончатой организации, они подразумевают, что «некоторое свойство клеток остается постоянным во всей толще коры от ее поверхности до белого вещества, но изменяется в направлениях, параллельных поверхности коры» (Хьюбел Д., 1990. С. 122). Сначала в зрительной коре (поле 17) были обнаружены группы клеток (колонок), связанных с разной глазодоминантностъю, как наиболее крупные. Было замечено, что всякий раз, когда регистрирующий микроэлектрод входил в кору обезьяны перпендикулярно ее поверхности, он встречал клетки, лучше реагирующие на стимуляцию только одного глаза. Если же его вводили на несколько миллиметров в сторону от предыдущего, но также вертикально, то для всех встречающихся клеток доминирующим был только один глаз — тот же, что и раньше, или другой. Если же электрод вводили с наклоном и как можно более параллельно поверхности коры, то клетки с разной глазодоми-нантностью чередовались. Полная смена доминантного глаза происходила примерно через каждый 1 мм.
Структурная организация нейронов коры была уточнена гис-тохимическими методами. Открытие нового метода окраски нейронов с применением микроинъекций фермента пероксидазы хрена в нейроны ЛКТ позволило проследить путь отдельных аксонов, приходящих из ЛКТ, и распределение их окончаний в коре. Метод основан на использовании явления аксонного транспорта вещества, введенного в клетку, которое окрашивает ее, но не влияет на ее структуру. Было установлено, что каждый аксон из ЛКТ прохо-
37
Рис. 7. Схематическое представление чередования в IV слое зрительной коры скоплений синаптических окончаний аксонов ЛКТ, проводящих сигнал в кору от левого и правого глаза. Чередование участков проекций от левого и правого глаза закладывает основу для колонок с разной глазодоминантно-стью. Цифры слева — нумерация слоев поля 17 (по Д. Хыобелу, 1990).
дит через нижние слои и оканчивается разветвлениями в ГУ слое. Здесь отдельные веточки одного аксона образуют скопления синаптических окончаний шириной 0,5 мм, отделенные друг от друга промежутками той же ширины. Волокна от одного глаза оканчиваются в одних участках, а от другого — в промежутках между ними (рис. 7). Таким образом, каналы передачи зрительной информации от разных глаз в IV слое коры, так же как и в ЛКТ таламу-са, не пересекаются.
Однако клетки с бинокулярными свойствами, реагирующие на сигналы от обоих глаз, в коре присутствуют. При этом они составляют более половины нейронов, расположенных в слоях выше и ниже IV слоя. В верхних слоях коры при переходе от колонки одной глазодоминантности к другой существуют промежуточные зоны, где смена доминантности происходит не скачком, а постепенно, проходя через промежуточные стадии. В промежуточных зонах находятся бинокулярные клетки.
Второй метод, который был применен для изучения колонок глазодоминантности во всей толщине коры, связан с использованием меченой дезоксиглюкозы. Метод предложен в 1976 г. Л. Соко-лоффым (L. Sokoloff) в Национальном институте здоровья в Бе-тезде. Дезоксиглюкоза по химической структуре близка к обычной глюкозе, которая интенсивно поглощается в качестве источника энергии возбужденными нейронами. Однако меченая дезоксиглю-
38
Рис. 8. Радиоавтограф, полученный с использованием меченой дезоксиглюкозы со среза зрительной коры макаки после длительной экспозиции на ее правый глаз сложного рисунка (а). Картина корковой проекции (6) содержит круги и радиусы запечатленного рисунка, но только в искаженном виде за счет непропорциональной проекции центра и периферии сетчатки на кору. Мелкие участки, на которые разделен рисунок в коре, отражают чередование колонок с разной глазодоминантностью (по Д. Хыобелу, 1990).
коза не может быть полностью расщеплена нейроном. Она накапливается в нем и может быть обнаружена с помощью радиоавтографии. Чтобы получить радиоавтограф, делают горизонтальный срез коры и покрывают его фотоимульсией, на которой после длительной экспозиции возникает карта распределения радиоактивной дезоксиглюкозы. При стимуляции одного глаза меченая дезоксиглюкоза будет накапливаться в колонках зрительной коры, связанных с этим глазом. На рис. 8 представлено распределение меченой дезоксиглюкозы в срезе коры, взятой параллельно ее поверхности от левого полушария мозга обезьяны после опыта со стимуляцией одного глаза. Во время опыта на ненаркотизированной макаке в центр зрительного поля ее правого глаза в течение 45 мин экспонировали сложный стимул, напоминающий мишень с радиальными линиями. Другой глаз был закрыт. Предваритель-
39
но животному была сделана инъекция радиоактивной дезоксиг-люкозы. Перед тем как сделать срез, корковую ткань растянули и заморозили. На радиоавтографе полукруглые линии стимула отображаются в коре вертикальными полосками, а радиальные линии — горизонтальными. Пунктирный характер каждой полоски на срезе обусловлен тем, что в опыте стимулировался только один глаз, т.е. возбуждались колонки только одной глазодоминантнос-ти, связанной с правым глазом. Колонки глазодоминантности имеются .у кошек, некоторых низших обезьян, шимпанзе и человека. У грызунов их нет.
Кроме колонок глазодоминантности, в зрительной коре разных животных (обезьяна, кошка, белка) обнаружены ориентаци-онные колонки. При вертикальном погружении микроэлектрода через толщу зрительной коры все клетки в верхних и нижних слоях (кроме IV слоя) избирательно реагируют на одну и ту же ориентацию линии. При смещении микроэлектрода картина остается той же, но меняется предпочитаемая ориентация, т.е. кора разбита на колонки, предпочитающие свою ориентацию. Радиоавтографы, взятые со срезов коры после стимуляции глаз полосками, определенным образом ориентированными, подтвердили результаты электрофизиологических опытов. Соседние колонки нейронов выделяют разные ориентации линий.
В коре обнаружены также колонки, избирательно реагирующие на направление движения или на цвет. Ширина цветочувстви-тельных колонок в стриарной коре около 100—250 мкм. Колонки, настроенные на разные длины волн, чередуются. Колонка с максимальной спектральной чувствительностью к 490—500 нм сменяется колонкой с максимумом цветовой чувствительности к 610 нм.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
янах. Другие исследователи уже на ненаркотизированных животных (макаках, кошках, крысах) также представили дополнительные доказательства колончатой организации коры.
В. Маунткасл (1981. С. 26), формулируя основные положения своей теории о колончатой организации коры, отмечал, что «основной единицей активности в новой коре служит вертикально расположенная группа клеток с множеством связей между этими клетками по вертикальной оси и малым их числом в горизонтальном направлении». Кортикальная колонка представляет собой обрабатывающее устройство со входом и выходом. Расположение в виде колонок делает возможным картирование одновременно нескольких переменных на двухмерной матрице поверхности коры. Между корковыми колонками и их группами существуют специфические связи.
Благодаря работам Д. Хьюбела и Т. Визеля сегодня мы более детально представляем колончатую организацию зрительной коры. Исследователи используют термин «колонка», предложенный В. Маунткаслом, но отмечают, что наиболее подходящим был бы термин «пластина». Говоря о колончатой организации, они подразумевают, что «некоторое свойство клеток остается постоянным во всей толще коры от ее поверхности до белого вещества, но изменяется в направлениях, параллельных поверхности коры» (Хьюбел Д., 1990. С. 122). Сначала в зрительной коре (поле 17) были обнаружены группы клеток (колонок), связанных с разной глазодоминантностъю, как наиболее крупные. Было замечено, что всякий раз, когда регистрирующий микроэлектрод входил в кору обезьяны перпендикулярно ее поверхности, он встречал клетки, лучше реагирующие на стимуляцию только одного глаза. Если же его вводили на несколько миллиметров в сторону от предыдущего, но также вертикально, то для всех встречающихся клеток доминирующим был только один глаз — тот же, что и раньше, или другой. Если же электрод вводили с наклоном и как можно более параллельно поверхности коры, то клетки с разной глазодоми-нантностью чередовались. Полная смена доминантного глаза происходила примерно через каждый 1 мм.
Структурная организация нейронов коры была уточнена гис-тохимическими методами. Открытие нового метода окраски нейронов с применением микроинъекций фермента пероксидазы хрена в нейроны ЛКТ позволило проследить путь отдельных аксонов, приходящих из ЛКТ, и распределение их окончаний в коре. Метод основан на использовании явления аксонного транспорта вещества, введенного в клетку, которое окрашивает ее, но не влияет на ее структуру. Было установлено, что каждый аксон из ЛКТ прохо-
37
Рис. 7. Схематическое представление чередования в IV слое зрительной коры скоплений синаптических окончаний аксонов ЛКТ, проводящих сигнал в кору от левого и правого глаза. Чередование участков проекций от левого и правого глаза закладывает основу для колонок с разной глазодоминантно-стью. Цифры слева — нумерация слоев поля 17 (по Д. Хыобелу, 1990).
дит через нижние слои и оканчивается разветвлениями в ГУ слое. Здесь отдельные веточки одного аксона образуют скопления синаптических окончаний шириной 0,5 мм, отделенные друг от друга промежутками той же ширины. Волокна от одного глаза оканчиваются в одних участках, а от другого — в промежутках между ними (рис. 7). Таким образом, каналы передачи зрительной информации от разных глаз в IV слое коры, так же как и в ЛКТ таламу-са, не пересекаются.
Однако клетки с бинокулярными свойствами, реагирующие на сигналы от обоих глаз, в коре присутствуют. При этом они составляют более половины нейронов, расположенных в слоях выше и ниже IV слоя. В верхних слоях коры при переходе от колонки одной глазодоминантности к другой существуют промежуточные зоны, где смена доминантности происходит не скачком, а постепенно, проходя через промежуточные стадии. В промежуточных зонах находятся бинокулярные клетки.
Второй метод, который был применен для изучения колонок глазодоминантности во всей толщине коры, связан с использованием меченой дезоксиглюкозы. Метод предложен в 1976 г. Л. Соко-лоффым (L. Sokoloff) в Национальном институте здоровья в Бе-тезде. Дезоксиглюкоза по химической структуре близка к обычной глюкозе, которая интенсивно поглощается в качестве источника энергии возбужденными нейронами. Однако меченая дезоксиглю-
38
Рис. 8. Радиоавтограф, полученный с использованием меченой дезоксиглюкозы со среза зрительной коры макаки после длительной экспозиции на ее правый глаз сложного рисунка (а). Картина корковой проекции (6) содержит круги и радиусы запечатленного рисунка, но только в искаженном виде за счет непропорциональной проекции центра и периферии сетчатки на кору. Мелкие участки, на которые разделен рисунок в коре, отражают чередование колонок с разной глазодоминантностью (по Д. Хыобелу, 1990).
коза не может быть полностью расщеплена нейроном. Она накапливается в нем и может быть обнаружена с помощью радиоавтографии. Чтобы получить радиоавтограф, делают горизонтальный срез коры и покрывают его фотоимульсией, на которой после длительной экспозиции возникает карта распределения радиоактивной дезоксиглюкозы. При стимуляции одного глаза меченая дезоксиглюкоза будет накапливаться в колонках зрительной коры, связанных с этим глазом. На рис. 8 представлено распределение меченой дезоксиглюкозы в срезе коры, взятой параллельно ее поверхности от левого полушария мозга обезьяны после опыта со стимуляцией одного глаза. Во время опыта на ненаркотизированной макаке в центр зрительного поля ее правого глаза в течение 45 мин экспонировали сложный стимул, напоминающий мишень с радиальными линиями. Другой глаз был закрыт. Предваритель-
39
но животному была сделана инъекция радиоактивной дезоксиг-люкозы. Перед тем как сделать срез, корковую ткань растянули и заморозили. На радиоавтографе полукруглые линии стимула отображаются в коре вертикальными полосками, а радиальные линии — горизонтальными. Пунктирный характер каждой полоски на срезе обусловлен тем, что в опыте стимулировался только один глаз, т.е. возбуждались колонки только одной глазодоминантнос-ти, связанной с правым глазом. Колонки глазодоминантности имеются .у кошек, некоторых низших обезьян, шимпанзе и человека. У грызунов их нет.
Кроме колонок глазодоминантности, в зрительной коре разных животных (обезьяна, кошка, белка) обнаружены ориентаци-онные колонки. При вертикальном погружении микроэлектрода через толщу зрительной коры все клетки в верхних и нижних слоях (кроме IV слоя) избирательно реагируют на одну и ту же ориентацию линии. При смещении микроэлектрода картина остается той же, но меняется предпочитаемая ориентация, т.е. кора разбита на колонки, предпочитающие свою ориентацию. Радиоавтографы, взятые со срезов коры после стимуляции глаз полосками, определенным образом ориентированными, подтвердили результаты электрофизиологических опытов. Соседние колонки нейронов выделяют разные ориентации линий.
В коре обнаружены также колонки, избирательно реагирующие на направление движения или на цвет. Ширина цветочувстви-тельных колонок в стриарной коре около 100—250 мкм. Колонки, настроенные на разные длины волн, чередуются. Колонка с максимальной спектральной чувствительностью к 490—500 нм сменяется колонкой с максимумом цветовой чувствительности к 610 нм.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113