Рис. 22 демонстрирует динамику одного из таких нейронов, реакция которого оценивалась по продолжительности нейронной реакции десинхронизации и по частоте одиночных спайков во время нее.
Таламическая неспецифическая система определяет появление в коре локальных форм активации. Из-за стратегической позиции одного из ядер неспецифического таламуса — ретикулярного ядра
84
(n.Ret) — предполагают его ключевую роль в происхождении локальной активации; оно является воротами для сенсорной информации, поступающей в кору. Однако ретикулярное ядро не имеет прямого выхода на кору. Вместе с тем оно получает входы от коры, ствола мозга, а также от всех других ядер таламуса. При этом его собственный выход может выборочно тормозить или не тормозить те или другие специфические ядра таламуса. Это единственное ядро, которое не имеет своих проекций в коре, и единственное ядро с тормозным выходом, по-видимому, выполняющее функцию внут-риталамического регулятора.
Кроме того, возможно, что это ядро через неспецифический таламус регулирует паттерны активации, необходимые для произвольных движений. Ретикулярное ядро находится под контролем РФ, которая может перекрывать селективное торможение, создаваемое n.Ret, и запускать генерализованный ОР.
В работах норвежских исследователей из Гетеборгского университета (Осло) П. Андерсена (P. Anderssen) с сотрудниками была изучена роль нейронов специфических ядер таламуса в происхождении локальных корковых реакций активации и инактивации. Они показали таламическое происхождение сонных и барбитуровых веретен коры и определили размеры участков коры и таламуса, образующих линии проекции, по которым из таламуса распространяются на кору синхронизирующие и десинхронизирующие влияния. Двигая один из подкорковых электродов, они определяли корреляцию электрической активности обеих структур. Высокая корреляция была найдена между корковыми и таламическими волнами для всех специфических ядер таламуса (латерального и медиального коленчатых тел, вентро-базального комплекса). Участки с высокой корреляцией в коре имели площадь диаметром 0,8 мм, в таламусе — 100-150 мкм. На основании расчета исследователи предположили, что в специфическом таламусе существует около 25000-30000 локальных пейсмекеров медленноволновой активности, что совпадает с предполагаемым количеством колонок в коре одного полушария кошки. Согласно их теории локальных пейсмекеров специфического таламуса каждый из таких пейсмекеров контролирует одну из корковых колонок через те же нейроны, которые передают в кору специфическую информацию. В зависимости от режима работы локального пейсмекера (одиночные спайки или пачечные разряды) в кору локально приходят либо активирующие, либо тормозные посылки.
Генерализованная активация охватывает обширные зоны коры. Ее происхождение связывают с функцией РФ ствола мозга. Генерализованная активация более длительна и быстрее угасает по срав-
85
нению с локальной активацией таламического происхождения. Принято считать, что функция стволовой неспецифической системы состоит в поддержании в мозге определенного функционального состояния, тогда как неспецифическая система в неспецифических и специфических ядрах таламуса связана с селективным вниманием.
Как показало изучение биохимических основ ЭЭГ-реакции активации, кора получает широкие проекции от четырех основных медиаторных систем — ДА-ергической, НА-ергической, се-ротонинергической и холинергической, однако только последняя причастна к ее активации. Кортикальная активация, вызванная электрической стимуляцией РФ ствола, сопровождается высвобождением ацетилхолина (АХ) в коре, т.е. РФ действует на кору через холинергические афференты. Конечное звено корковой активации холинергично и представлено мускариновыми (М-) рецепторами нейронов коры, чувствительными к АХ. Локальное наложение АХ на кору возбуждает примерно до 50% ее нейронов. Атропин, избирательно угнетающий М-рецепторы, блокирует этот эффект. Сенсорные раздражения разной модальности увеличивают количество высвобождающегося АХ в коре, а деафферентация животного сопровождается падением свободного АХ. Реакция ЭЭГ-активации коррелирует с ростом количества АХ в жидкости, омывающей поверхность коры. Наркоз снижает выход АХ, одновременно блокируя ЭЭГ-активацию.
Во время парадоксального сна активация также имеет холи-нергическую природу, которая развивается в коре на фоне редукции норадренергической и серотонинергической модуляций из-за снижения активности нейронов синего пятна и ядер шва. По данным ПЭТ, во время парадоксального сна активацию находят в покрышке варолиева моста, в лимбической системе: миндалине, парагиппокампальной коре, передней поясной коре и тесно связанной с лимбическими структурами медиальной префронталь-ной коре при одновременной деактивации дорзолатеральной пре-фронтальной коры, в которой представлен аппарат рабочей памяти (см. главу «Память»). Такой паттерн возбуждения во время парадоксального сна создает уникальные условия для обработки исключительно внутренней информации, функционально изолированной от сенсорного входа и от выхода (через дорзолатераль-ную префронтальную кору) относительно внешнего мира.
Однако до сих пор остается неясным, через какие пути РФ среднего мозга распространяет свою активацию на кору. Утверждение, что РФ имеет прямой выход на кору, основано на косвенных доказательствах, полученных в поведенческих и физиологи-
86
ческих опытах. Никогда не были точно показаны анатомические связи стволовой РФ с корой. Более детальное изучение этой проблемы показало, что выход стволовой РФ на кору осуществляется, по-видимому, через базальную холинергическую систему переднего мозга, которая моносинаптически проецируется на кору. Кроме того, она имеет вход от РФ и один из ее выходов на кору проходит через таламус.
5.9.2.2. Базальная холинергическая система
В базальном переднем мозге (Basal Forebrain) найдены магно-целлюлярные нейроны, содержащие АХ и моносинаптически проецирующиеся на кору. Главная холинергическая структура — ядро Мейнерта (n.basalis — NB)., Электрическая стимуляция NB, а также SI (substancia innominata) у анестезированной крысы высвобождает в коре АХ. Эффект можно блокировать атропином — антагонистом мускариновых рецепторов. Параллельно электрическая стимуляция увеличивает кровоток в коре, что указывает на холинергическую природу расширения сосудов мозга.
Холинергическая система переднего мозга принимает участие как в регуляции цикла сон—бодрствование, так и в вызове корковой реакции активации. В составе холинергической системы мозга различают активирующие и тормозные структуры, взаимодействие которых определяет уровень активации коры. Активирующие структуры (NB и др.) поддерживают бодрствование. В них выделены нейроны, связанные с бодрствованием. Уровень их активности меняется параллельно циклу бодрствование—сон, увеличиваясь во время бодрствования и парадоксального сна (Szymusiak R., 1995). Частота их спайков особенно растет во время движения животного. У этих нейронов, так же как у нейронов таламуса, режим одиночных спайков в бодрствовании сменяется пачечной активностью во время медленного сна.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
Таламическая неспецифическая система определяет появление в коре локальных форм активации. Из-за стратегической позиции одного из ядер неспецифического таламуса — ретикулярного ядра
84
(n.Ret) — предполагают его ключевую роль в происхождении локальной активации; оно является воротами для сенсорной информации, поступающей в кору. Однако ретикулярное ядро не имеет прямого выхода на кору. Вместе с тем оно получает входы от коры, ствола мозга, а также от всех других ядер таламуса. При этом его собственный выход может выборочно тормозить или не тормозить те или другие специфические ядра таламуса. Это единственное ядро, которое не имеет своих проекций в коре, и единственное ядро с тормозным выходом, по-видимому, выполняющее функцию внут-риталамического регулятора.
Кроме того, возможно, что это ядро через неспецифический таламус регулирует паттерны активации, необходимые для произвольных движений. Ретикулярное ядро находится под контролем РФ, которая может перекрывать селективное торможение, создаваемое n.Ret, и запускать генерализованный ОР.
В работах норвежских исследователей из Гетеборгского университета (Осло) П. Андерсена (P. Anderssen) с сотрудниками была изучена роль нейронов специфических ядер таламуса в происхождении локальных корковых реакций активации и инактивации. Они показали таламическое происхождение сонных и барбитуровых веретен коры и определили размеры участков коры и таламуса, образующих линии проекции, по которым из таламуса распространяются на кору синхронизирующие и десинхронизирующие влияния. Двигая один из подкорковых электродов, они определяли корреляцию электрической активности обеих структур. Высокая корреляция была найдена между корковыми и таламическими волнами для всех специфических ядер таламуса (латерального и медиального коленчатых тел, вентро-базального комплекса). Участки с высокой корреляцией в коре имели площадь диаметром 0,8 мм, в таламусе — 100-150 мкм. На основании расчета исследователи предположили, что в специфическом таламусе существует около 25000-30000 локальных пейсмекеров медленноволновой активности, что совпадает с предполагаемым количеством колонок в коре одного полушария кошки. Согласно их теории локальных пейсмекеров специфического таламуса каждый из таких пейсмекеров контролирует одну из корковых колонок через те же нейроны, которые передают в кору специфическую информацию. В зависимости от режима работы локального пейсмекера (одиночные спайки или пачечные разряды) в кору локально приходят либо активирующие, либо тормозные посылки.
Генерализованная активация охватывает обширные зоны коры. Ее происхождение связывают с функцией РФ ствола мозга. Генерализованная активация более длительна и быстрее угасает по срав-
85
нению с локальной активацией таламического происхождения. Принято считать, что функция стволовой неспецифической системы состоит в поддержании в мозге определенного функционального состояния, тогда как неспецифическая система в неспецифических и специфических ядрах таламуса связана с селективным вниманием.
Как показало изучение биохимических основ ЭЭГ-реакции активации, кора получает широкие проекции от четырех основных медиаторных систем — ДА-ергической, НА-ергической, се-ротонинергической и холинергической, однако только последняя причастна к ее активации. Кортикальная активация, вызванная электрической стимуляцией РФ ствола, сопровождается высвобождением ацетилхолина (АХ) в коре, т.е. РФ действует на кору через холинергические афференты. Конечное звено корковой активации холинергично и представлено мускариновыми (М-) рецепторами нейронов коры, чувствительными к АХ. Локальное наложение АХ на кору возбуждает примерно до 50% ее нейронов. Атропин, избирательно угнетающий М-рецепторы, блокирует этот эффект. Сенсорные раздражения разной модальности увеличивают количество высвобождающегося АХ в коре, а деафферентация животного сопровождается падением свободного АХ. Реакция ЭЭГ-активации коррелирует с ростом количества АХ в жидкости, омывающей поверхность коры. Наркоз снижает выход АХ, одновременно блокируя ЭЭГ-активацию.
Во время парадоксального сна активация также имеет холи-нергическую природу, которая развивается в коре на фоне редукции норадренергической и серотонинергической модуляций из-за снижения активности нейронов синего пятна и ядер шва. По данным ПЭТ, во время парадоксального сна активацию находят в покрышке варолиева моста, в лимбической системе: миндалине, парагиппокампальной коре, передней поясной коре и тесно связанной с лимбическими структурами медиальной префронталь-ной коре при одновременной деактивации дорзолатеральной пре-фронтальной коры, в которой представлен аппарат рабочей памяти (см. главу «Память»). Такой паттерн возбуждения во время парадоксального сна создает уникальные условия для обработки исключительно внутренней информации, функционально изолированной от сенсорного входа и от выхода (через дорзолатераль-ную префронтальную кору) относительно внешнего мира.
Однако до сих пор остается неясным, через какие пути РФ среднего мозга распространяет свою активацию на кору. Утверждение, что РФ имеет прямой выход на кору, основано на косвенных доказательствах, полученных в поведенческих и физиологи-
86
ческих опытах. Никогда не были точно показаны анатомические связи стволовой РФ с корой. Более детальное изучение этой проблемы показало, что выход стволовой РФ на кору осуществляется, по-видимому, через базальную холинергическую систему переднего мозга, которая моносинаптически проецируется на кору. Кроме того, она имеет вход от РФ и один из ее выходов на кору проходит через таламус.
5.9.2.2. Базальная холинергическая система
В базальном переднем мозге (Basal Forebrain) найдены магно-целлюлярные нейроны, содержащие АХ и моносинаптически проецирующиеся на кору. Главная холинергическая структура — ядро Мейнерта (n.basalis — NB)., Электрическая стимуляция NB, а также SI (substancia innominata) у анестезированной крысы высвобождает в коре АХ. Эффект можно блокировать атропином — антагонистом мускариновых рецепторов. Параллельно электрическая стимуляция увеличивает кровоток в коре, что указывает на холинергическую природу расширения сосудов мозга.
Холинергическая система переднего мозга принимает участие как в регуляции цикла сон—бодрствование, так и в вызове корковой реакции активации. В составе холинергической системы мозга различают активирующие и тормозные структуры, взаимодействие которых определяет уровень активации коры. Активирующие структуры (NB и др.) поддерживают бодрствование. В них выделены нейроны, связанные с бодрствованием. Уровень их активности меняется параллельно циклу бодрствование—сон, увеличиваясь во время бодрствования и парадоксального сна (Szymusiak R., 1995). Частота их спайков особенно растет во время движения животного. У этих нейронов, так же как у нейронов таламуса, режим одиночных спайков в бодрствовании сменяется пачечной активностью во время медленного сна.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113