генетическую, иммунологическую и нейрологическую (нервную) память. Чтобы жить, органическая система должна постоянно себя воспроизводить, иначе говоря, помнить свое строение и функции. Память о структурно-функциональной организации живой системы как представителя определенного биологического вида получила название генетической. Носителями генетической памяти являются нуклеиновые кислоты (ДНК, РНК).
С генетической памятью тесно связана иммунологическая память. В эволюции она возникает позже генетической и проявляется в способности иммунной системы усиливать защитную реакцию организма на повторное проникновение в него генетически инородных тел (вирусов, бактерий и др.). Все чужеродные вещества, вторгшиеся в организм, независимо от их разновидности принято называть антигенами. Иммунные белки, способные разрушать чужеродные тела, получили название антител.
Иммунный ответ осуществляется двумя системами. Первая — система Т-лимфоцитов — обеспечивает клеточную защиту — разрушение чужеродных клеток с помощью специфических клонов лимфоцитов, т.е. являющихся потомками одной клетки-предшественника, посредством их прямого контакта с чужеродными телами. Центральным органом Т-системы является вилочковая железа (Т-тимус), которая вырабатывает различные популяции Т-лимфоцитов (Т-киллеры, Т-хелперы, Т-клеточные рецепторы и др., распознающие антигены). Вторая — система В-лимфоцитов, относящаяся к костному мозгу; она обеспечивает гуморальную защиту, продуцирует В-лимфоциты и их потомки — плазмоциты. Последние вырабатывают различные классы иммуноглобулинов в качестве антител, встроенных в их мембрану.
Обе системы обеспечивают распознавание и уничтожение генетически чужеродных тел или веществ. Т-лимфоциты-киллеры несут на своей мембране антителоподобные рецепторы, которые 100
специфически распознают антиген, находящийся на мембране чужеродных клеток, и обеспечивают прикрепление киллера к клетке-мишени. После ее прикрепления киллеры выделяют в просвет между киллером и мишенью особый белок, «продырявливающий» мембрану клетки-мишени. В результате чужеродная клетка погибает. После этого они открепляются от мишени и переходят на другую клетку, и так несколько раз. Механизм действия В-лимфоцитов иной. Сами их антитела безвредны для клеток, несущих антиген. Они не обладают физиологической активностью, ведущей к разрушению антигена. При встрече с антигенами к антителам подключается специальный механизм (система комплемента), который активирует комплекс антиген—антитело. В результате резко усиливается эффект действия антител и комплекс антиген—антитело приобретает способность «продырявливать» клеточную мембрану, вызывать воспаление и тем самым убивать чужеродные клетки.
Важную функцию выполняют Т-хелперы (помощники). Лимфоциты-помощники сами не способны ни вырабатывать антитела, как это делают В-лимфоциты, ни убивать клетки-мишени, как Т-лимфоциты-киллеры. Но распознавая чужеродный антиген, они реагируют на него выработкой ростовых и дифференцировочных факторов, которые необходимы для размножения и созревания лимфоцитов, образующих антитела, и лимфоцитов-киллеров. Синдром приобретенного иммунодефицита — СПИД — вызывается вирусом, который поражает именно лимфоциты-помощники, что делает иммунную систему не способной ни к выработке антител, ни к образованию киллеров.
Согласно клонально-селекционной теории иммунитета австралийского исследователя — лауреата Нобелевской премии Ф.М. Беркета, сформулированной им в 1957 г., которая позже получила полное экспериментальное подтверждение, активированный антигеном лимфоцит вступает в процесс деления и диффе-ренцировки и образует клетки, секретирующие антитела. В результате из одной клетки возникает 500—1000 генетически идентичных клеток (клон), синтезирующих один и тот же тип антител, способных специфически распознавать антиген и соединяться с ним. Клоны лимфоцитов-потомков состоят не только из эффекторных клеток — плазматических клеток, секретирующих антитела, но и из многочисленных клеток памяти. Последние при повторяющемся воздействии тем же антигеном способны превращаться в клетки-потомки обоих типов: эффекторные и клетки памяти. Продолжительность жизни эффекторных клеток измеряется днями, а клетки памяти в популяции лимфоцитов могут сохраняться
101
десятилетиями. При повторной встрече с тем же антигеном распознающие его клетки памяти начинают быстрее и в большем количестве создавать эффекторные клетки, продуцирующие специфические антитела. Параллельно увеличивается производство и эффекторных Т-клеток (киллеров).
Таким образом, за время онтогенеза популяция лимфоцитов эволюционирует, создавая у взрослого организма индивидуальный иммунный набор/'В этом и проявляется иммунологическая память, которая, используя механизмы генетической памяти, обеспечивает более гибкое приспособление организма к микроразнообразию внешней среды (Вартанян Г.А., Лохов М.И., 1987).
Неврологическая, или нервная, память появляется у животных, обладающих нервной системой. Ее можно определить как совокупность сложных процессов, обеспечивающих формирование адаптивного поведения организма (субъекта). Неврологическая память использует не только собственные специфические механизмы, обеспечивающие индивидуальную адаптацию организма, но и механизмы более древней генетической памяти, способствующей выживанию бирлогического вида. Поэтому в неврологической памяти выделяют' генотипическую, или врожденную, память. Именно она у высших животных обеспечивает становление безусловных рефлексов, им-принтинга, различных форм врожденного поведения (инстинктов), играющих роль в приспособлении и выживаемости вида. Феноти-пическая память составляет основу адаптивного, индивидуального поведения, формируемого в результате научения. Ее механизмы обеспечивают хранение и извлечение информации, приобретаемой в течение жизни, в процессе индивидуального развития.
6.1.2. Временная организация памяти
Изменение следа памяти— энграммы во времени побудило исследователей ввести временной критерий для различения видов памяти. С позиции сторонников, подчеркивающих роль временного фактора в становлении энграммы, в ее жизни существует несколько этапов. Они последовательно переходят друг в друга и различаются механизмами запечатления энграммы, степенью ее устойчивости, объемом одновременно сохраняемой информации.
Наиболее популярна концепция временной организации памяти, принадлежащая канадскому психологу Д. Хеббу (D. Hebb), который выделил два хранилища памяти: кратковременное и долговременное. Кратковременная память (КП) представляет первый этап формирования энграммы. Ее существование во времени ограниче-102
но, след в КП лабилен, неустойчив, так как испытывает сильную интерференцию со стороны самых различных амнестических факторов — электрошока, травмы головы и др. Объем информации, одновременно сохраняемой в КП, ограничен. Поэтому более поздние следы вытесняют более ранние.
В качестве механизма КП большинство ученых рассматривают многократное циркулирование импульсов (реверберацию) по замкнутой цепочке нейронов. Вместе с тем многие физиологи и молекулярные биологи видят основу КП и в некоторых изменениях клеточной мембраны.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
С генетической памятью тесно связана иммунологическая память. В эволюции она возникает позже генетической и проявляется в способности иммунной системы усиливать защитную реакцию организма на повторное проникновение в него генетически инородных тел (вирусов, бактерий и др.). Все чужеродные вещества, вторгшиеся в организм, независимо от их разновидности принято называть антигенами. Иммунные белки, способные разрушать чужеродные тела, получили название антител.
Иммунный ответ осуществляется двумя системами. Первая — система Т-лимфоцитов — обеспечивает клеточную защиту — разрушение чужеродных клеток с помощью специфических клонов лимфоцитов, т.е. являющихся потомками одной клетки-предшественника, посредством их прямого контакта с чужеродными телами. Центральным органом Т-системы является вилочковая железа (Т-тимус), которая вырабатывает различные популяции Т-лимфоцитов (Т-киллеры, Т-хелперы, Т-клеточные рецепторы и др., распознающие антигены). Вторая — система В-лимфоцитов, относящаяся к костному мозгу; она обеспечивает гуморальную защиту, продуцирует В-лимфоциты и их потомки — плазмоциты. Последние вырабатывают различные классы иммуноглобулинов в качестве антител, встроенных в их мембрану.
Обе системы обеспечивают распознавание и уничтожение генетически чужеродных тел или веществ. Т-лимфоциты-киллеры несут на своей мембране антителоподобные рецепторы, которые 100
специфически распознают антиген, находящийся на мембране чужеродных клеток, и обеспечивают прикрепление киллера к клетке-мишени. После ее прикрепления киллеры выделяют в просвет между киллером и мишенью особый белок, «продырявливающий» мембрану клетки-мишени. В результате чужеродная клетка погибает. После этого они открепляются от мишени и переходят на другую клетку, и так несколько раз. Механизм действия В-лимфоцитов иной. Сами их антитела безвредны для клеток, несущих антиген. Они не обладают физиологической активностью, ведущей к разрушению антигена. При встрече с антигенами к антителам подключается специальный механизм (система комплемента), который активирует комплекс антиген—антитело. В результате резко усиливается эффект действия антител и комплекс антиген—антитело приобретает способность «продырявливать» клеточную мембрану, вызывать воспаление и тем самым убивать чужеродные клетки.
Важную функцию выполняют Т-хелперы (помощники). Лимфоциты-помощники сами не способны ни вырабатывать антитела, как это делают В-лимфоциты, ни убивать клетки-мишени, как Т-лимфоциты-киллеры. Но распознавая чужеродный антиген, они реагируют на него выработкой ростовых и дифференцировочных факторов, которые необходимы для размножения и созревания лимфоцитов, образующих антитела, и лимфоцитов-киллеров. Синдром приобретенного иммунодефицита — СПИД — вызывается вирусом, который поражает именно лимфоциты-помощники, что делает иммунную систему не способной ни к выработке антител, ни к образованию киллеров.
Согласно клонально-селекционной теории иммунитета австралийского исследователя — лауреата Нобелевской премии Ф.М. Беркета, сформулированной им в 1957 г., которая позже получила полное экспериментальное подтверждение, активированный антигеном лимфоцит вступает в процесс деления и диффе-ренцировки и образует клетки, секретирующие антитела. В результате из одной клетки возникает 500—1000 генетически идентичных клеток (клон), синтезирующих один и тот же тип антител, способных специфически распознавать антиген и соединяться с ним. Клоны лимфоцитов-потомков состоят не только из эффекторных клеток — плазматических клеток, секретирующих антитела, но и из многочисленных клеток памяти. Последние при повторяющемся воздействии тем же антигеном способны превращаться в клетки-потомки обоих типов: эффекторные и клетки памяти. Продолжительность жизни эффекторных клеток измеряется днями, а клетки памяти в популяции лимфоцитов могут сохраняться
101
десятилетиями. При повторной встрече с тем же антигеном распознающие его клетки памяти начинают быстрее и в большем количестве создавать эффекторные клетки, продуцирующие специфические антитела. Параллельно увеличивается производство и эффекторных Т-клеток (киллеров).
Таким образом, за время онтогенеза популяция лимфоцитов эволюционирует, создавая у взрослого организма индивидуальный иммунный набор/'В этом и проявляется иммунологическая память, которая, используя механизмы генетической памяти, обеспечивает более гибкое приспособление организма к микроразнообразию внешней среды (Вартанян Г.А., Лохов М.И., 1987).
Неврологическая, или нервная, память появляется у животных, обладающих нервной системой. Ее можно определить как совокупность сложных процессов, обеспечивающих формирование адаптивного поведения организма (субъекта). Неврологическая память использует не только собственные специфические механизмы, обеспечивающие индивидуальную адаптацию организма, но и механизмы более древней генетической памяти, способствующей выживанию бирлогического вида. Поэтому в неврологической памяти выделяют' генотипическую, или врожденную, память. Именно она у высших животных обеспечивает становление безусловных рефлексов, им-принтинга, различных форм врожденного поведения (инстинктов), играющих роль в приспособлении и выживаемости вида. Феноти-пическая память составляет основу адаптивного, индивидуального поведения, формируемого в результате научения. Ее механизмы обеспечивают хранение и извлечение информации, приобретаемой в течение жизни, в процессе индивидуального развития.
6.1.2. Временная организация памяти
Изменение следа памяти— энграммы во времени побудило исследователей ввести временной критерий для различения видов памяти. С позиции сторонников, подчеркивающих роль временного фактора в становлении энграммы, в ее жизни существует несколько этапов. Они последовательно переходят друг в друга и различаются механизмами запечатления энграммы, степенью ее устойчивости, объемом одновременно сохраняемой информации.
Наиболее популярна концепция временной организации памяти, принадлежащая канадскому психологу Д. Хеббу (D. Hebb), который выделил два хранилища памяти: кратковременное и долговременное. Кратковременная память (КП) представляет первый этап формирования энграммы. Ее существование во времени ограниче-102
но, след в КП лабилен, неустойчив, так как испытывает сильную интерференцию со стороны самых различных амнестических факторов — электрошока, травмы головы и др. Объем информации, одновременно сохраняемой в КП, ограничен. Поэтому более поздние следы вытесняют более ранние.
В качестве механизма КП большинство ученых рассматривают многократное циркулирование импульсов (реверберацию) по замкнутой цепочке нейронов. Вместе с тем многие физиологи и молекулярные биологи видят основу КП и в некоторых изменениях клеточной мембраны.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113