https://www.dushevoi.ru/products/smesiteli/dlya_vanny/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Произвольные движения, вызываемые инструкцией или внутренним побуждением человека, опосредованы внутренней речью, претворяющей замысел (цель) во внутренний план действий.
Ведущая роль в процессе управления движением принадлежит префронтальной коре. Выполняемая ею актуализация следов памяти позволяет префронтальной коре корректировать внутреннюю модель внешнего мира в соответствии с оперативно поступающей сенсорной информацией, в том числе от выполняемого движения (Гольдман-Ракич П.С., 1992). С функцией префронтальной коры связывают способность мысленно проектировать будущую траекторию движущейся цели. У макак резусов с повреждением соответствующих участков в дорзальной части префронтальной коры, где расположены глазодвигательные центры, возникают расстройства мысленной экстраполяции траектории движения.
Таким образом, управление и контроль за движением — достаточно сложный процесс. Он включает обработку информации, получаемой через прямые и обратные связи между префронтальной корой, моторной корой, таламусом, мозжечком, базальными ганглиями, а также стволом мозга и спинным мозгом. Важная роль принадлежит проприоцептивной и экстероцептивной афферента-ции. Двигательная система организована по иерархическому принципу с постепенным увеличением сложности сенсомоторной интеграции. На каждом ее уровне имеется своя «ведущая афферента-ция» и собственный тип регулируемых движений.
249
8.4. ВЕКТОРНАЯ МОДЕЛЬ УПРАВЛЕНИЯ ДВИГАТЕЛЬНЫМИ И ВЕГАТАТИВНЫМИ РЕАКЦИЯМИ
Согласно представлению о векторном кодировании информации в нейронных сетях реализацию двигательного акта или его фрагмента можно описать следующим образом, обратившись к концептуальной рефлекторной дуге Е.Н. Соколова. Исполнительная ее часть представлена командным нейроном или полем командных нейронов. Возбуждение командного нейрона воздействует на ансамбль премоторных нейронов и порождает в них управляющий вектор возбуждения, которому соответствует определенный паттерн возбужденых мотонейронов, определяющий внешнюю реакцию. Поле командных нейронов обеспечивает сложный набор запрограммированных реакций. Это достигается тем, что каждый из командных нейронов поочередно может воздействовать на ансамбль премоторных нейронов, создавая в них специфические управляющие векторы возбуждения, которые и определяют разные внешние реакции. Все разнообразие реакций, таким образом, можно представить в пространстве, размерность которого определяется числом премоторных нейронов, возбуждение последних образуют управляющие векторы.
Структура концептуальной рефлекторной дуги включает блок рецепторов, выделяющих определенную категорию входных сигналов. Второй блок — предетекторы, трансформирующие сигналы рецепторов в форму, эффективную для селективного возбуждения детекторов, образующих карту отображения сигналов. Все нейроны-детекторы проецируются на командные нейроны параллельно. Имеется блок модулирующих нейронов, которые характеризуются тем, что они не включены непосредственно в цепочку передачи информации от рецепторов на входе к эффекторам на выходе. Образуя «синапсы на синапсах», они модулируют прохождение информации. Модулирующие нейроны можно разделить на локальные, оперирующие в пределах рефлекторной дуги одного рефлекса, и генерализованные, охватывающие своим влиянием ряд рефлекторных дуг и тем самым определяющие общий уровень функционального состояния. Локальные модулирующие нейроны, усиливая или ослабляя синаптические входы на командных нейронах, перераспределяют приоритеты реакций, за которые эти командные нейроны ответственны. Модулирующие нейроны действуют через гиппокамп, куда на нейроны «новизны» и «тождества» проецируются детекторные карты.
Командные нейроны получают от карт детекторов и, возможно, от ансамбля предетекторов общий для всех вектор возбужде-
250
ния через непластичные и пластичные синапсы. Возбуждение командного нейрона через непластичный вход вызывает его врожденную, безусловную реакцию. Пластичные входы могут стать эффективными в отношении командного нейрона и вызывать соответствующую реакцию только после обучения. Процесс обучения реализуется избирательно только в том командном нейроне, непластичный вход которого активируется подкреплением. Результатом обучения является формирование вектора связи — повышенной проводимости в определенной группе пластичных синапсов на командном нейроне. Пластичный синапс изменяется по принципу Хебба. Его проводимость растет пропорционально силе его возбуждения, вызываемого условным стимулом, если вслед за ним через непластичный вход на командный нейрон поступает возбуждение, являющееся подкреплением.
Реакция командного нейрона определяется скалярным произведением вектора возбуждения и вектора синаптических связей. Когда вектор синаптических связей в результате обучения совпадает с вектором возбуждения по направлению, скалярное произведение достигает максимума и командный нейрон становится селективно настроенным на условный сигнал. Дифференцировоч-ные раздражители вызывают векторы возбуждения, отличающиеся от того, который порождает условный раздражитель. Чем больше это различие, тем меньше вероятность вызова возбуждения командного нейрона.
Для выполнения произвольной двигательной реакции требуется участие нейронов памяти. На командных нейронах сходятся пути не только от детекторных сетей, но и от нейронов памяти.
Все перечисленные блоки рефлекторной концептуальной дуги образуют первую сигнальную систему. Для человека характерен блок «сигнала сигналов» — вторая сигнальная система, которая представлена специальными нейронами, реализующими символьную функцию, когда сигнал-символ выступает заместителем группы событий, представленных на нейронах памяти. Сигнал из семантической памяти, согласно инструкции, задаче, также способен инициировать вход к командному нейрону и вызывать соответствующую реакцию.
Векторный принцип управления обнаруживается и в вегетативных реакциях. Первое описание сердечного ритма (СР) в векторных понятиях принадлежит группе исследователей из Университета штата Огайо — И. Кациоппо и его коллегам (Cacioppo I.T.).
Основываясь на результатах изучения СР у крыс с избирательной блокадой симпатической и парасимпатической ветвей автономной нервной системы, они представили период сердеч-
251
дых
0,02 0,04 0,06 0,08 0,1 0,12 0.14 0,16 0,3 0,5
МЕТ СОС ДЫХ -ч ^^\ ^ \
0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3
0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3 0,5
СОС
дых
0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3 0,5
Рис. 54. Факторные нагрузки четырех векторных пространств сердечного
ритма.
а — студенты (90 человек); б — школьники (60 человек); в — беременные женщины (135 человек); г — их плоды. О сходстве пространств сердечного ритма свидетельствуют их трехмерная структура и идентичная интерпретация факторов: МЕТ, СОС, ДЫХ (метаболическим, сосудистый и дыхательный модуляторы СР). По ординате — факторные нагрузки, по абсциссе — частотные полосы спектра мощности РГ сердца.
ных сокращений как функцию двух независимых переменных: возбуждений симпатической и парасимпатической систем.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
 https://sdvk.ru/Sanfayans/Unitazi/Cvetnye/ 

 плиточная мозаика