https://www.dushevoi.ru/products/uglovye_vanny/120x120/ 

 

В этих условиях порой единственным возможным методом исследования является моделирование (физическое, логическое, математическое). Без модели нет познания. Любая гипотеза – это модель. И правильность гипотезы о будущем состоянии объекта зависит от того, насколько правильно определили параметры исследуемого объекта и их взаимосвязи между собой и внешней средой. Однако научное описание никогда не охватывает всех деталей, оно всегда выделяет существенные элементы структур и связей. Поэтому такое описание содержит обобщенную модель явлений. В настоящее время термин «общая теория систем» по предложению Л.Берталанфи трактуется в широком и узком смысле. Общая теория систем, понимаемая в широком смысле, охватывает комплекс математических и инженерных дисциплин, начиная с кибернетики и кончая инженерной психологией. Более узкое толкование термина связано с выбором класса математических моделей для описания систем и уровня их абстрактного описания.
Аналогичная ситуация складывается и с теорией развития сложных систем. Ее также можно понимать в широком и узком смысле. В широком смысле теория развития сложных систем – это естественнонаучная конкретизация общей теории развития – материалистической диалектики. В рамках этой же теории должны быть объединены основные положения о поведении сложных систем, разработанные в различных областях научного знания, в результате чего может быть построена концептуальная модель процессов развития сложных систем различной природы. Более узкое понимание теории развития предполагает построение математических моделей развития конкретных систем (биологических, экологических, экономических, социальных и т. п.). В этом случае объект исследования выделяется и анализируется конкретной научной дисциплиной.
Особенность простых систем – в практически взаимной независимости их свойств, позволяющей исследовать каждое из них в отдельности в условиях классического лабораторного эксперимента; особенность сложных систем заключается в существенной взаимосвязи их свойств (иногда она даже применяется как определение сложной системы).
Будем считать систему сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов, каждый из которых может быть представлен в виде системы. В качестве содержания теории развития сложных систем можно рассматривать совокупность методологических подходов, позволяющих строить модели процессов развития сложных систем, используя достижения различных наук, а также методы анализа получаемых моделей.
Обычное для теории простых систем требование адекватности модели оригиналу для моделей сложных систем приводит к непомерному росту их размерности, приводящему к их неосуществимости. Ситуация для построения теории кажется безнадежной, она действительно оказывается таковой, если не произвести некоторого разумного отступления от непомерных требований адекватности теории и вместе с тем не отступать от требований ее объективности.
Математические модели любых систем могут быть двух типов – эмпирические и теоретические. Эмпирические модели – это математические выражения, аппроксимирующие (с использованием тех или иных критериев приближения) экспериментальные данные о зависимости параметров состояния системы от значений параметров влияющих на них факторов. Для эмпирических математических моделей не требуется получения никаких представлений о строении и внутреннем механизме связей в системе. Вместе с тем задача о нахождении математического выражения эмпирической модели по заданному массиву наблюдений в пределах выбранной точности описания явления не однозначна. Существует бесконечное множество математических выражений, аппроксимирующих в пределах данной точности одни и те же опытные данные о зависимости параметров.
Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.
Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант, либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.
Построение эмпирических моделей – единственно возможный способ моделирования тех элементов системы, для которых нельзя построить в настоящее время теоретических моделей из-за отсутствия сведений об их внутреннем механизме. Вопросы, связанные с построением эмпирических моделей, относятся к области обработки наблюдений или, точнее, к математической теории планирования эксперимента.
Для некоторых систем единственная возможность оценить правильность теоретической модели состоит в проведении численных экспериментов с использованием математических моделей. Поведение модели не должно противоречить общим представлениям о закономерностях поведения процессов.
Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу.
Строго обосновать выражение «модели относятся к одному и тому же классу» несколько затруднительно. Мы будем рассматривать класс развивающихся систем, к которому могут относиться системы искусственные, живой и неживой природы, социальные и т. п.
Между эмпирическими, полуэмпирическими и теоретическими моделями не существует резкой границы. Любые математические модели, в конечном счете, выражаются через параметры, определяемые экспериментальным путем. Все различия между тремя упомянутыми типами моделей сводятся к степени общности представлений, относящихся к данной модели, а именно: или они относятся непосредственно к изучаемому конкретному объекту, или связаны с классом таких объектов, или же, наконец, связаны с классом явлений, наблюдающихся в природе большинство процессов столь сложно, что при современном состоянии науки очень редко удается создать их универсальную теорию, действующую во все времена и на всех участках рассматриваемого процесса. Вместо этого нужно посредством экспериментов и наблюдений постараться понять ведущие (определяющие) факторы, которые определяют поведение системы. Выделив эти факторы, следует абстрагироваться от других, менее существенных, построить более простую математическую модель, которая учитывает лишь выделенные факторы. К внешним факторам будем относить такие, которые влияют на параметры изучаемой модели, но сами на исследуемом временном отрезке не испытывают обратного влияния.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 https://sdvk.ru/Dushevie_kabini/pryamougolniye/s-vysokim-poddonom/ 

 peronda femme плитка