Вслед за Эйгеном в 1980-м новосибирскими учеными В.Ратнером и В.Шаминым была предложена модель «сайзеров».
В модели квазивидов рассматривается поэтапная эволюция популяции информационных последовательностей (векторов), компоненты которых принимают небольшое число дискретных значений. Модельно заданы приспособленности «особей» как функции векторов. На каждом этапе происходит отбор особей в популяцию следующего поколения с вероятностями, пропорциональными их приспособленностям, а также мутации особей – случайные равновероятные замены компонент векторов.
Модель сайзеров в простейшем случае рассматривает систему из трех типов макромолекул: полинуклеотидной матрицы и ферментов трансляции и репликации, кодируемых этой матрицей. Полинуклеотидная матрица – это как бы запоминающее устройство, в котором хранится информация о функциональных единицах сайзера – ферментах. Фермент трансляции обеспечивает «изготовление» произвольного фермента по записанной в матрице информации. Фермент репликации обеспечивает копирование полинуклеотидной матрицы. Сайзер достаточен для самовоспроизведения. Включая в схему сайзера дополнительные ферменты, кодируемые полинуклеотидной матрицей, можно обеспечить сайзер какими-либо свойствами, например свойством регулирования синтеза определенных ферментов и адаптации к изменениям внешней среды.
К началу 50-х годов в науке сформировалась синтетическая теория эволюции, основанная на объединении генетики и дарвиновского учения о естественном отборе. Математические модели этой теории хорошо разработаны, однако они практически не касаются анализа эволюции информационных систем биологических организмов. Однако в последующие десятилетия появились модели, исследующие молекулярно-генетические аспекты эволюции.
Японский ученый М.Кимура, например разработал теорию нейтральности, согласно которой на молекулярном уровне большинство мутаций оказываются нейтральными а один из наиболее важных механизмов появления новой генетической информации состоит в дубликации уже имеющихся генов и последующей модификации одного из дублированных участков. В работах московских ученых Д. и Н.Чернавских сделана оценка вероятности случайного формирования нового биологически значимого белка (кодируемого ДНК) с учетом того, что в белке есть активный центр, в котором замены аминокислот практически недопустимы, и участки, свойства которых не сильно меняются при многих аминокислотных заменах. Полученная оценка указывает на то, что случайное формирование белка было вполне вероятно в процессе эволюции.
В чрезвычайно интересных работах С.Кауфмана с сотрудниками из Пенсильванского университета исследуется эволюция автоматов, состоящих из соединенных между собой логических элементов. Отдельный автомат можно рассматривать как модель молекулярно-генетической системы управления живой клетки, причем каждый логический элемент интерпретируется как регулятор синтеза определенного фермента. Модели Кауфмана позволяют сделать ряд предсказаний относительно «программ» жизнедеятельности клетки. В частности, продемонстрировано, что для одновременного обеспечения устойчивости и гибкости программы число входов логических элементов должно быть ограничено определенным интервалом, а именно составлять величину примерно равную 2–3.
Согласованность и эффективность работы элементов биологических организмов наводит на мысль: а можно ли использовать принципы биологической эволюции для оптимизации практически важных для человека систем? Одна из первых схем эволюционной оптимизации была предложена в 60-е годы П.Фогелем, А.Оуэнсом и М.Уолшем; эффективность этой схемы на практике была продемонстрирована И.Букатовой из Москвы. Также в последнее время проявляется большой интерес к исследованию и использованию генетического алгоритма, предложенного Дж. Холландом из Мичиганского университета. Этот генетический алгоритм предназначен для решения задач комбинаторной оптимизации, то есть оптимизации структур, задаваемых векторами, компоненты которых принимают дискретные значения. Схема генетического алгоритма практически совпадает с таковой в модели квазивидов, за исключением того, что в генетическом алгоритме механизм изменчивости помимо точечных мутаций включает в себя кроссинговер – скрещивание структур. Генетический алгоритм естественно «вписывается» в параллельную многопроцессорную вычислительную архитектуру: каждой «особи» популяции можно поставить в соответствие отдельный процессор, поэтому возможно построение специализированных компьютеров, эффективно реализующих генетический алгоритм.
7.6.2. Нейронные сети и нейрокомпьютер
В последнее время активно ведутся также работы по построению моделей обработки информации в нервной системе. Большинство моделей основывается на схеме формального нейрона У.МакКаллока и У.Питтса, согласно которой нейрон представляет собой пороговый элемент, на входах которого имеются возбуждающие и тормозящие синапсы; в этом нейроне определяется взвешенная сумма входных сигналов (с учетом весов синапсов), а при превышении этой суммой порога нейрона вырабатывается выходной сигнал.
В моделях уже построены нейронные сети, выполняющие различные алгоритмы обработки информации: ассоциативная память, категоризация (разбиение множества образов на кластеры, состоящие из подобных друг другу образов), топологически корректное отображение одного пространства переменных в другое, распознавание зрительных образов, инвариантное относительно деформаций и сдвигов в пространстве решение задач комбинаторной оптимизации. Подавляющее число работ относится к исследованию алгоритмов нейросетей с прагматическими целями.
Предполагается, что практические задачи будут решаться нейрокомпьютерами – искусственными нейроподобными сетями, созданными на основе микроэлектронных вычислительных систем. Спектр задач для разрабатываемых нейрокомпьютеров достаточно широк: распознавание зрительных и звуковых образов, создание экспертных систем и их аналогов, управление роботами, создание нейропротезов для людей, потерявших слух или зрение. Достоинства нейрокомпьютеров – параллельная обработка информации и способность к обучению.
Несмотря на чрезвычайную активность исследований по нейронным сетям и нейрокомпьютерам, многое в этих исследованиях настораживает. Ведь изучаемые алгоритмы выглядят как бы «вырванным куском» из общего осмысления работы нервной системы. Часто исследуются те алгоритмы, для которых удается построить хорошие модели, а не те, что наиболее важны для понимания свойств мышления, работы мозга и для создания систем искусственного интеллекта. Задачи, решаемые этими алгоритмами, оторваны от эволюционного контекста, в них практически не рассматривается, каким образом и почему возникли те или иные системы обработки информации. Настораживает также чрезмерная упрощенность понимания работы нейронных сетей, при котором нейроны осмыслены лишь как суммирующие пороговые элементы, а обучение сети происходит путем модификации синапсов. Ряд исследователей, правда, рассматривает нейрон как значительно более сложную систему обработки информации, предполагая, что основную роль в обучении играют молекулярные механизмы внутри нейрона.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
В модели квазивидов рассматривается поэтапная эволюция популяции информационных последовательностей (векторов), компоненты которых принимают небольшое число дискретных значений. Модельно заданы приспособленности «особей» как функции векторов. На каждом этапе происходит отбор особей в популяцию следующего поколения с вероятностями, пропорциональными их приспособленностям, а также мутации особей – случайные равновероятные замены компонент векторов.
Модель сайзеров в простейшем случае рассматривает систему из трех типов макромолекул: полинуклеотидной матрицы и ферментов трансляции и репликации, кодируемых этой матрицей. Полинуклеотидная матрица – это как бы запоминающее устройство, в котором хранится информация о функциональных единицах сайзера – ферментах. Фермент трансляции обеспечивает «изготовление» произвольного фермента по записанной в матрице информации. Фермент репликации обеспечивает копирование полинуклеотидной матрицы. Сайзер достаточен для самовоспроизведения. Включая в схему сайзера дополнительные ферменты, кодируемые полинуклеотидной матрицей, можно обеспечить сайзер какими-либо свойствами, например свойством регулирования синтеза определенных ферментов и адаптации к изменениям внешней среды.
К началу 50-х годов в науке сформировалась синтетическая теория эволюции, основанная на объединении генетики и дарвиновского учения о естественном отборе. Математические модели этой теории хорошо разработаны, однако они практически не касаются анализа эволюции информационных систем биологических организмов. Однако в последующие десятилетия появились модели, исследующие молекулярно-генетические аспекты эволюции.
Японский ученый М.Кимура, например разработал теорию нейтральности, согласно которой на молекулярном уровне большинство мутаций оказываются нейтральными а один из наиболее важных механизмов появления новой генетической информации состоит в дубликации уже имеющихся генов и последующей модификации одного из дублированных участков. В работах московских ученых Д. и Н.Чернавских сделана оценка вероятности случайного формирования нового биологически значимого белка (кодируемого ДНК) с учетом того, что в белке есть активный центр, в котором замены аминокислот практически недопустимы, и участки, свойства которых не сильно меняются при многих аминокислотных заменах. Полученная оценка указывает на то, что случайное формирование белка было вполне вероятно в процессе эволюции.
В чрезвычайно интересных работах С.Кауфмана с сотрудниками из Пенсильванского университета исследуется эволюция автоматов, состоящих из соединенных между собой логических элементов. Отдельный автомат можно рассматривать как модель молекулярно-генетической системы управления живой клетки, причем каждый логический элемент интерпретируется как регулятор синтеза определенного фермента. Модели Кауфмана позволяют сделать ряд предсказаний относительно «программ» жизнедеятельности клетки. В частности, продемонстрировано, что для одновременного обеспечения устойчивости и гибкости программы число входов логических элементов должно быть ограничено определенным интервалом, а именно составлять величину примерно равную 2–3.
Согласованность и эффективность работы элементов биологических организмов наводит на мысль: а можно ли использовать принципы биологической эволюции для оптимизации практически важных для человека систем? Одна из первых схем эволюционной оптимизации была предложена в 60-е годы П.Фогелем, А.Оуэнсом и М.Уолшем; эффективность этой схемы на практике была продемонстрирована И.Букатовой из Москвы. Также в последнее время проявляется большой интерес к исследованию и использованию генетического алгоритма, предложенного Дж. Холландом из Мичиганского университета. Этот генетический алгоритм предназначен для решения задач комбинаторной оптимизации, то есть оптимизации структур, задаваемых векторами, компоненты которых принимают дискретные значения. Схема генетического алгоритма практически совпадает с таковой в модели квазивидов, за исключением того, что в генетическом алгоритме механизм изменчивости помимо точечных мутаций включает в себя кроссинговер – скрещивание структур. Генетический алгоритм естественно «вписывается» в параллельную многопроцессорную вычислительную архитектуру: каждой «особи» популяции можно поставить в соответствие отдельный процессор, поэтому возможно построение специализированных компьютеров, эффективно реализующих генетический алгоритм.
7.6.2. Нейронные сети и нейрокомпьютер
В последнее время активно ведутся также работы по построению моделей обработки информации в нервной системе. Большинство моделей основывается на схеме формального нейрона У.МакКаллока и У.Питтса, согласно которой нейрон представляет собой пороговый элемент, на входах которого имеются возбуждающие и тормозящие синапсы; в этом нейроне определяется взвешенная сумма входных сигналов (с учетом весов синапсов), а при превышении этой суммой порога нейрона вырабатывается выходной сигнал.
В моделях уже построены нейронные сети, выполняющие различные алгоритмы обработки информации: ассоциативная память, категоризация (разбиение множества образов на кластеры, состоящие из подобных друг другу образов), топологически корректное отображение одного пространства переменных в другое, распознавание зрительных образов, инвариантное относительно деформаций и сдвигов в пространстве решение задач комбинаторной оптимизации. Подавляющее число работ относится к исследованию алгоритмов нейросетей с прагматическими целями.
Предполагается, что практические задачи будут решаться нейрокомпьютерами – искусственными нейроподобными сетями, созданными на основе микроэлектронных вычислительных систем. Спектр задач для разрабатываемых нейрокомпьютеров достаточно широк: распознавание зрительных и звуковых образов, создание экспертных систем и их аналогов, управление роботами, создание нейропротезов для людей, потерявших слух или зрение. Достоинства нейрокомпьютеров – параллельная обработка информации и способность к обучению.
Несмотря на чрезвычайную активность исследований по нейронным сетям и нейрокомпьютерам, многое в этих исследованиях настораживает. Ведь изучаемые алгоритмы выглядят как бы «вырванным куском» из общего осмысления работы нервной системы. Часто исследуются те алгоритмы, для которых удается построить хорошие модели, а не те, что наиболее важны для понимания свойств мышления, работы мозга и для создания систем искусственного интеллекта. Задачи, решаемые этими алгоритмами, оторваны от эволюционного контекста, в них практически не рассматривается, каким образом и почему возникли те или иные системы обработки информации. Настораживает также чрезмерная упрощенность понимания работы нейронных сетей, при котором нейроны осмыслены лишь как суммирующие пороговые элементы, а обучение сети происходит путем модификации синапсов. Ряд исследователей, правда, рассматривает нейрон как значительно более сложную систему обработки информации, предполагая, что основную роль в обучении играют молекулярные механизмы внутри нейрона.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79