У них ушло на это пять дней.
Когда завершилось сооружение хенджа в Эйвбери, он стал главным мегалитическим объектом в Англии и остается таковым до сих пор. Много раз в разные времена года стоял я на этой загадочной территории, и мое тело покалывало от «атмосферы», которую я там ощущал. Часто я прислонялся к одному из гигантских мегалитов и удивлялся людям, соорудившим этот памятник. Каково было его предназначение? Зачем им было тратить столько времени и сил, если только к этому их не побудила какая то веская причина? Какие тайны должен открыть этот объект?
Храмовые объекты в Эйвбери
Охота за леи на картах требует времени, работы мысли и экспериментирования. В тот день в 1975 году я сидел за своим письменным столом с линейкой, карандашом и картой, пытаясь найти какую либо связь между церковными объектами в Винтерборн Монктоне, Бервик Бассетте, Винтерборн Бассетте и Броуд Хинтоне и самим Эйвбери Несколько попыток обнаружить линии визирования не дали удовлетворительных результатов. И все же что то в их расположении беспокоило меня. Я интуитивно чувствовал существование какой то связи между ними, и чем дольше я смотрел на них, тем больше мне казалось, что они могут располагаться по дуге Могло ли такое случиться? Да и ради чего?
Леи или расположение объектов на одной линии по определению всегда прямые. Я никогда еще не сталкивался даже с намеком на возможность существования кольцеобразных ландшафтных структур. Как бы то ни было, то ли из любопытства, то ли из упрямства я на чертил круг на кальке и проверил свою догадку Размер нарисованного круга не был выбран произвольно а основывался на трезвом расчете и результатах моих прежних исследований. Его радиус на местности был чуть меньше 9,6 километра (6 миль) – расстояния, установленного сэром Норманом Локаиером в треугольнике Стоунхендж Олд Сэрам-замок Гроувли.
Далее случилось то, что повергло меня в изумление с первой же попытки я попал в яблочко (рис. 5). Окруж ность в 60 километров (37 миль) длиной прошла не только через все четыре церкви и Эйвбери хендж, но и еще через десять достойных внимания объектов Даже ось продолговатого кургана Ист-Кеннетт выстроилась вдоль края круга (рис. 6).
Если бы эти объекты выстроились на местности в прямую линию, их, несомненно, можно было бы рассматривать как прекрасно построенный леи. До тех пор я не находил – и даже не слышал о таком – леи с пятнадцатью объектами, расположенными на одной столь короткой линии.
Математически можно провести окружность через любые три точки, не находящиеся на одной прямой линии. Теоретически восемьдесят случайных точек могут оказаться на окружности круга с радиусом в 9,6 километра (6 миль) только в результате статистического выверта. При увеличении же числа таких точек шансы их случайного происхождения стремятся к нулю. Случайно описать пятнадцать точек окружностью радиусом в 9,6 километра (6 миль) практически невозможно.
Для расположения объектов на местности по одной прямой линии в 60 километров (37 миль) длиной достаточно использовать топографические стойки и немного изобретательности. Расположение же объектов по большому кругу представляет собой сложнейшую задачу. Для ее выполнения необходимы более глубокое понимание математических принципов и более передовая техника съемки.
Легко нарисовать на земле небольшой круг диаметром в несколько футов. Это можно сделать с помощью колышка и шнурка. Но создание круга диаметром около 19,3 километра (12 миль) – более серьезная задача, которая может оказаться не по плечу даже лучшим современным геодезистам. И тем не менее вот он, этот круг, на карте передо мной.
Я медленно осознавал последствия своего открытия, и неверие уступило место приятному возбуждению. Построение объектов по одной прямой линии было вполне доступно примитивным людям, использовавшим элементарные орудия и простую геодезическую технику. Совсем иное дело – построение круга такой величины. Если бы это можно было подкрепить доказательствами, тогда следовало бы сделать только один вывод: по крайней мере пять тысячелетий назад на Британских островах существовала весьма сложная и передовая культура.
Глава 2
Пульсации круга
Что– то глубокое и древнее спит в этих холмах.
Я сделал поразительное открытие – большой круг на местности в южной Англии, который наводил на многих интригующие вопросы касательно его создания. Каким бы невероятным это ни показалось, но все эти объекты на окружности никак не могли попасть на нее по чистой случайности. Ответ могло дать дальнейшее исследование. Был ли этот круг был создан умышленно, тогда он должен быть современником самых первых объектов. Следовательно, уже в начале III тысячелетия до н. э. в Англии должны были жить передовые люди, способные разместить на местности такую структуру.
Нарисованный на карте круг представлялся мне убедительным, но прежде чем продвинуться дальше, я должен был удостовериться в том, что отмеченные мной объекы не были химерой и что круг действительно существует. Этого можно было добиться более требовательным исследованием в сочетании со сложными математи ческими расчетами.
Карты в масштабе 1: 50 000 идеальны для собирания общих черт местности, но недостаточно подробны, что бы оценить точность круга диаметром в 19,3 километра (12 миль).
Необходимы карты большего масштаба – от 1: 25 000 до 1: 2 500. Хотя окружность круга отмечена рядом церквей и древних земляных сооружений, в центре ее не было явного ориентировочного знака. Мне предстояло изучить различные объекты на местности прежде, чем я мог поверить в то, что – как мне казалось – я открыл.
Система координат
Карты картографического управления основаны на координатной системе, которая позволяет дать конкретный числовой указатель любой точке на местности в Англии. На картах в масштабе 1: 50 000 такие указатели, или координаты, даются через каждый километр, с подразделением каждого квадрата по 100 метров. Например, координатный указатель церкви в Бервик-Бассетте – 098 735, корректируемый до 100 метров. Самые подробные городские карты картографического управления выполнены в масштабе 1: 1250 и могут показать местоположение объектов с точностью до одного метра. При использовании этой системы письменный стол, за которым я пишу настоящую книгу, может получить точные координаты, по которым любой, пользующийся соответствующей картой картографического управления, может найти его.
Или мое положение может быть определено с помощью всемирных координат широты и долготы, которые обычно используются в навигации и воздухоплавании. Проблема с использованием таких координат заключается в том, что расчеты производятся исходя из сложной геометрии сфер, а она требует использования более сложных уравнений при определении расстояний и угловых соотношений.
Для относительно небольших пространств вроде Британских островов картографы посчитали, что гораздо легче учесть кривизну Земли и установить местную координатную систему, в которой обе сетки координат имеют оди наковую длину. Это облегчает вычисление расстояний и угловых отношений между любыми двумя или тремя объектами. Используемые при этом методы основаны на тригонометрии, которую я изучал еще в школе.
В моем исследовании оказалось весьма важным математическое вычисление на основе координатных указаний картографического управления, ибо позволило мне пользоваться не догадками, а измерениями по масштабным картам.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
Когда завершилось сооружение хенджа в Эйвбери, он стал главным мегалитическим объектом в Англии и остается таковым до сих пор. Много раз в разные времена года стоял я на этой загадочной территории, и мое тело покалывало от «атмосферы», которую я там ощущал. Часто я прислонялся к одному из гигантских мегалитов и удивлялся людям, соорудившим этот памятник. Каково было его предназначение? Зачем им было тратить столько времени и сил, если только к этому их не побудила какая то веская причина? Какие тайны должен открыть этот объект?
Храмовые объекты в Эйвбери
Охота за леи на картах требует времени, работы мысли и экспериментирования. В тот день в 1975 году я сидел за своим письменным столом с линейкой, карандашом и картой, пытаясь найти какую либо связь между церковными объектами в Винтерборн Монктоне, Бервик Бассетте, Винтерборн Бассетте и Броуд Хинтоне и самим Эйвбери Несколько попыток обнаружить линии визирования не дали удовлетворительных результатов. И все же что то в их расположении беспокоило меня. Я интуитивно чувствовал существование какой то связи между ними, и чем дольше я смотрел на них, тем больше мне казалось, что они могут располагаться по дуге Могло ли такое случиться? Да и ради чего?
Леи или расположение объектов на одной линии по определению всегда прямые. Я никогда еще не сталкивался даже с намеком на возможность существования кольцеобразных ландшафтных структур. Как бы то ни было, то ли из любопытства, то ли из упрямства я на чертил круг на кальке и проверил свою догадку Размер нарисованного круга не был выбран произвольно а основывался на трезвом расчете и результатах моих прежних исследований. Его радиус на местности был чуть меньше 9,6 километра (6 миль) – расстояния, установленного сэром Норманом Локаиером в треугольнике Стоунхендж Олд Сэрам-замок Гроувли.
Далее случилось то, что повергло меня в изумление с первой же попытки я попал в яблочко (рис. 5). Окруж ность в 60 километров (37 миль) длиной прошла не только через все четыре церкви и Эйвбери хендж, но и еще через десять достойных внимания объектов Даже ось продолговатого кургана Ист-Кеннетт выстроилась вдоль края круга (рис. 6).
Если бы эти объекты выстроились на местности в прямую линию, их, несомненно, можно было бы рассматривать как прекрасно построенный леи. До тех пор я не находил – и даже не слышал о таком – леи с пятнадцатью объектами, расположенными на одной столь короткой линии.
Математически можно провести окружность через любые три точки, не находящиеся на одной прямой линии. Теоретически восемьдесят случайных точек могут оказаться на окружности круга с радиусом в 9,6 километра (6 миль) только в результате статистического выверта. При увеличении же числа таких точек шансы их случайного происхождения стремятся к нулю. Случайно описать пятнадцать точек окружностью радиусом в 9,6 километра (6 миль) практически невозможно.
Для расположения объектов на местности по одной прямой линии в 60 километров (37 миль) длиной достаточно использовать топографические стойки и немного изобретательности. Расположение же объектов по большому кругу представляет собой сложнейшую задачу. Для ее выполнения необходимы более глубокое понимание математических принципов и более передовая техника съемки.
Легко нарисовать на земле небольшой круг диаметром в несколько футов. Это можно сделать с помощью колышка и шнурка. Но создание круга диаметром около 19,3 километра (12 миль) – более серьезная задача, которая может оказаться не по плечу даже лучшим современным геодезистам. И тем не менее вот он, этот круг, на карте передо мной.
Я медленно осознавал последствия своего открытия, и неверие уступило место приятному возбуждению. Построение объектов по одной прямой линии было вполне доступно примитивным людям, использовавшим элементарные орудия и простую геодезическую технику. Совсем иное дело – построение круга такой величины. Если бы это можно было подкрепить доказательствами, тогда следовало бы сделать только один вывод: по крайней мере пять тысячелетий назад на Британских островах существовала весьма сложная и передовая культура.
Глава 2
Пульсации круга
Что– то глубокое и древнее спит в этих холмах.
Я сделал поразительное открытие – большой круг на местности в южной Англии, который наводил на многих интригующие вопросы касательно его создания. Каким бы невероятным это ни показалось, но все эти объекты на окружности никак не могли попасть на нее по чистой случайности. Ответ могло дать дальнейшее исследование. Был ли этот круг был создан умышленно, тогда он должен быть современником самых первых объектов. Следовательно, уже в начале III тысячелетия до н. э. в Англии должны были жить передовые люди, способные разместить на местности такую структуру.
Нарисованный на карте круг представлялся мне убедительным, но прежде чем продвинуться дальше, я должен был удостовериться в том, что отмеченные мной объекы не были химерой и что круг действительно существует. Этого можно было добиться более требовательным исследованием в сочетании со сложными математи ческими расчетами.
Карты в масштабе 1: 50 000 идеальны для собирания общих черт местности, но недостаточно подробны, что бы оценить точность круга диаметром в 19,3 километра (12 миль).
Необходимы карты большего масштаба – от 1: 25 000 до 1: 2 500. Хотя окружность круга отмечена рядом церквей и древних земляных сооружений, в центре ее не было явного ориентировочного знака. Мне предстояло изучить различные объекты на местности прежде, чем я мог поверить в то, что – как мне казалось – я открыл.
Система координат
Карты картографического управления основаны на координатной системе, которая позволяет дать конкретный числовой указатель любой точке на местности в Англии. На картах в масштабе 1: 50 000 такие указатели, или координаты, даются через каждый километр, с подразделением каждого квадрата по 100 метров. Например, координатный указатель церкви в Бервик-Бассетте – 098 735, корректируемый до 100 метров. Самые подробные городские карты картографического управления выполнены в масштабе 1: 1250 и могут показать местоположение объектов с точностью до одного метра. При использовании этой системы письменный стол, за которым я пишу настоящую книгу, может получить точные координаты, по которым любой, пользующийся соответствующей картой картографического управления, может найти его.
Или мое положение может быть определено с помощью всемирных координат широты и долготы, которые обычно используются в навигации и воздухоплавании. Проблема с использованием таких координат заключается в том, что расчеты производятся исходя из сложной геометрии сфер, а она требует использования более сложных уравнений при определении расстояний и угловых соотношений.
Для относительно небольших пространств вроде Британских островов картографы посчитали, что гораздо легче учесть кривизну Земли и установить местную координатную систему, в которой обе сетки координат имеют оди наковую длину. Это облегчает вычисление расстояний и угловых отношений между любыми двумя или тремя объектами. Используемые при этом методы основаны на тригонометрии, которую я изучал еще в школе.
В моем исследовании оказалось весьма важным математическое вычисление на основе координатных указаний картографического управления, ибо позволило мне пользоваться не догадками, а измерениями по масштабным картам.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61