немецкие смесители для кухни 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


В природе симметрия также встречается в изобилии. Снежинка обладает удивительнейшей гексагональной симметрией. Кристаллы также имеют характерные геометрические формы – вспомним хотя бы кубическую форму кристаллов соли, отражающую регулярность атомной структуры. Падающая дождевая капля имеет форму идеальной сферы и, замерзая, превращается в ледяной шарик – градину.
Другой вид симметрии, часто наблюдаемый в природе и в созданных человеком вещах, – так называемая зеркальная симметрия. Человеческое тело обладает (приближенно) зеркальной симметрией относительно вертикальной оси. В зеркале правая и левая руки и другие части тела меняются местами, но видимое Вами зеркальное отражение узнаваемо. Многие архитектурные сооружения, например арки или соборы, обладают зеркальной симметрией.
Между геометрической симметрией и тем, что в физике принято называть законами сохранения, существует тесная связь. Законы сохранения говорят нам, что некоторые величины не изменяются со временем. В американском футболе число игроков на поле сохраняется. Игроки могут выходить на поле и уходить с поля, но общее число их остается постоянным. В физике существует закон, согласно которому в любой изолированной системе энергия, импульс и момент импульса должны сохраняться. Это отнюдь не означает, что изолированная система не может изменяться, – просто любое изменение, происходящее в системе, должно быть таким, чтобы три названные величины оставались постоянными. В бильярде, где из-за гладкой текстуры поверхности бильярдного стола шары приближенно можно считать механически изолированными, законы сохранения энергии и импульса определяют направления движения и скорости шаров.
Законы сохранения энергии, импульса и момента импульса вытекают непосредственно из законов движения Ньютона, но более поздняя формулировка этих законов, данная Лагранжем и Гамильтоном, позволила гораздо четче выявить их значение. Механика Лагранжа и Гамильтона обнажила глубокую и мощную связь между сохранением той или иной величины и, соответствующей симметрией рассматриваемой системы. Например, если система симметрична относительно вращении, то из уравнений Гамильтона и Лагранжа следует, что сохраняется момент импульса. Хорошей иллюстрацией сказанному может служить сила тяготения Солнца. Хотя сферическое Солнце вращается вокруг своего центра, это никак не сказывается на движении Земли по орбите. Гравитационное поле Солнца симметрично и поэтому не изменяется при простом вращении. Этой геометрической симметрии соответствует физический результат: момент импульса планеты, движущейся по орбите, всегда постоянен. (Этот факт был открыт еще в XVII в. Кеплером, который, однако, не оценил его истинный смысл.) Аналогичные соображения применимы к импульсу и энергии.
Симметрии, соответствующие вращению или отражению, наглядны и радуют глаз, но они не исчерпывают весь запас симметрий, существующих в природе. Исследуя математическое описание той или иной физической системы, физики открывают время от времени новые и неожиданные симметрии. Симметрии таинственно и тонко “запрятаны” в математическом аппарате и совсем не очевидны тому, кто наблюдает саму физическую систему. Манипулируя символами в уравнениях, физики пытаются раскрыть весь набор симметрий, в том числе и таких, которые не видны “невооруженным глазом”.
Классический пример такого рода, возникший на рубеже нашего столетия, относится к законам электромагнитного поля.
Несколькими десятилетиями раньше Майкл Фарадей и другие физики установили, что электричество и магнетизм тесно связаны между собой и что одно порождает другое. Действие электрических и магнитных сил удобнее всего было описать, пользуясь понятием поля – невидимого воздействия, создаваемого материей, простирающегося далеко в пространство и способного влиять на электрически заряженные частицы, электрические токи и магниты. Действие такого поля можно наблюдать, если попытаться сблизить два магнита: не соприкасаясь друг с другом, они будут отталкиваться или притягиваться.
Позднее, в 50-х годах XIX в., Джеймс Клерк Максвелл, опираясь на эти факты, разработал теорию, связав электрическое и магнитное поля единой системой уравнений. Сначала Максвелл обнаружил, что эти уравнения “несбалансированны”: члены, относящиеся к электрическому и магнитному полям, входят в них не вполне симметрично. Чтобы придать уравнениям более красивый и симметричный вид, он ввел дополнительный член. Его можно было бы интерпретировать как не замеченный ранее эффект – порождение магнетизма переменным электрическим полем, но оказалось, что такой эффект действительно существует. Природа, очевидно, одобрила эстетический вкус Максвелла!
Введение дополнительного члена в уравнения Максвелла повлекло за собой чрезвычайно глубокие последствия. Во-первых, это позволило соединить электрическое и магнитное поля в единое электромагнитное поле. Уравнения Максвелла можно считать первой единой теорией поля, первым шагом на долгом пути к суперсиле. Они показали, что две силы природы, кажущиеся на первый взгляд совершенно различными, в действительности могут оказаться двумя различными проявлениями объединяющей их силы.
Во-вторых, среди решений уравнения Максвелла обнаружились неожиданные, но весьма многообещающие. Выяснилось, что уравнениям Максвелла удовлетворяют различные синусоидальные функции (опять симметрия!), которые, как уже говорилось ранее в этой главе, описывают периодические колебания, или волны. Эти электромагнитные волны, заключил Максвелл, самостоятельно распространяются в поле, т.е. в том, что кажется пустым пространством. Из своих уравнений он вывел формулу, выражающую скорость электромагнитных волн через электрические и магнитные величины. Подставляя численные значения, Максвелл получил, что скорость электромагнитных волн составляет около 300 000 км/с, т.е. совпадает со скоростью света. Отсюда последовал неизбежный вывод: свет должен представлять собой электромагнитную волну. Он действительно может распространяться в пустом пространстве, именно поэтому мы и видим Солнце.
Пойдя дальше, Максвелл предсказал также существование электромагнитных волн другой длины, и через несколько лет его предсказание подтвердилось: Генрих Герц открыл в лабораторных условиях радиоволны. Сегодня мы знаем, что гамма-, рентгеновское, инфракрасное, ультрафиолетовое и СВЧ-излучения также представляют собой электромагнитные волны. Небольшая добавка, внесенная Максвеллом в уравнения (носящие ныне его имя) из соображений симметрии, принесла большие результаты.
Открытие электромагнитных волн имело далеко идущие последствия, приведя к появлению радиотехники и в конечном счете к современной революции в электронике. Это великолепный пример, наглядно демонстрирующий не только гигантские возможности математики в описании мира и расширении нашего знания о нем, но и роль симметрии и красоты как путеводного принципа. Но оценить полностью все следствия, вытекающие из симметрии уравнений Максвелла, удалось лишь через пятьдесят лет.
На рубеже XX в. Анри Пуанкаре и Хендрик Лоренц исследовали математическую структуру уравнений Максвелла.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
 https://sdvk.ru/Vanni/130x70/ 

 argenta glitter