Однако аналогичные эксперименты в других лабораториях не подтвердили результатов Фейрбэнка и многие физики относятся к его сообщениям скептически. Означает ли это, что у физиков есть сомнения относительно существования кварков? Отнюдь! Растет убеждение, что кварки могут существовать только внутри адронов. Если так, то должен быть закон природы, запрещающий существование изолированных кварков. Когда мы пытаемся “извлечь” кварк из адрона, что-то должно препятствовать его полному удалению из адрона. Возможно, таким препятствием оказывается глюонное поле. Очевидно, кварки внутри адрона связаны столь крепко, что никакие силы в мире не в состоянии разорвать эти связи и освободить кварки. Физики говорят, что кварки навсегда “заточены” внутри адронов, и называют придуманное впоследствии объяснение этого факта проблемой конфайнмента, или удержания.
Суперклей
Главный вызов теории бросает проблема удержания кварков в рамках калибровочных полей. Если бы удалось создать отдельный кварк, то он обладал бы определенным цветовым зарядом – красным, зеленым или синим. Но поскольку кварки удерживаются внутри адронов, мы не наблюдаем первичных цветов, а только ! “белые”, бесцветные, комбинации. Если удержание постоянно, то это означает, что по каким-то причинам природа запрещает появление “голого” цвета. Действует своеобразная цензура. Это объясняет, почему могут существовать изолированные лептоны, а не кварки: дело в том, что лептоны бесцветны.
А что произойдет, если попытаться просто-напросто силой вытолкнуть кварк из адрона? Каким суперклеем он удерживается там так прочно, что никогда не освобождается?
Важный ключ к разгадке природы взаимодействия между кварками был получен в экспериментах на СЛАКе (о которых мы упоминали ранее) при бомбардировке протонов электронами очень высоких энергии. Результаты экспериментов свидетельствовали о том, что на коротких расстояниях взаимодействие ослабевает и кварки по существу ведут себя, как свободные частицы. Более содержательную информацию удается извлечь из свойств мезонов, в которых кварк и антикварк образуют связанную систему, напоминающую атом водорода. Исследуя возбужденные состояния атома водорода, можно сделать вывод, что, поскольку электрическая сила, действующая между протоном и электроном, подчиняется закону обратных квадратов, их взаимное притяжение быстро уменьшается с расстоянием. Аналогичные исследования возбужденных состояний мезонов свидетельствуют о прямо противоположной ситуации. Если две частицы удаляются на большое рас" стояние и переходят в состояние с более высокой энергией, взаимодействие между ними не ослабевает, а усиливается.
Из полученных результатов следует, что взаимодействие между кварками носит странный характер. Все известные взаимодействия ослабевают с увеличением расстояния, тогда как в случае сил, действующих между кварками, наблюдается обратная картина. Они ведут себя, как кусок резины, который сопротивляется растяжению тем сильнее, чем больше его растягивают, и становится свободным, когда концы сближаются. Другой аналогией может служить цепь – кажется, что кварки внутри адронов скованы цепями. Когда кварки находятся близко друг к другу, цепи не ощущаются, и кварки в узких пределах ведут себя свободно и независимо. Но стоит лишь одному из кварков предпринять “попытку к бегству”, как цепь натягивается и резко тянет его назад. Физики называют эту ситуацию заточением или удержанием кварков.
Как только идея удержания кварков получила всеобщее признание, возникла мысль, способна ли КХД объяснить его. Вычисления оказались чрезвычайно трудными, хотя и выявили ряд обнадеживающих моментов. С физической точки зрения удалось в общих чертах понять, каким образом взаимодействие между кварками усиливается с ростом расстояния.
Основное различие между электромагнитным полем, в котором сила убывает с увеличением расстояния, и глюонным полем состоит в том, что фотоны не имеют электрического заряда. Если бы у них был электрический заряд, то мир изменился бы до неузнаваемости. В отличие от фотонов глюоны несут цветовой “заряд” в различных комбинациях, например в комбинации красно-антизеленый. Но цвет – источник сильного взаимодействия. Следовательно, глюоны не только соединяют кварки, но и стремятся соединиться друг о другом. Это существенно усложняет ситуацию, но тщательный анализ приводит к мысли, что эта универсальная “липкость” глюонов, возможно, является ключом к объяснению удержания кварков.
Чтобы уяснить это, нам придется вернуться к понятию квантового вакуума. Посмотрим прежде всего, что произойдет с электроном, если его поместить в вакуум. Напомним, что пространство вокруг электрона в действительности не пусто, а заполнено виртуальными частицами всевозможных сортов, в том числе виртуальными электронами и виртуальными позитронами. Хотя мы непосредственно не наблюдаем эти виртуальные частицы, известно, что они тем не менее существуют и могут создавать физические эффекты. Электрон, помещенный в вакуум, также “узнает” об их существовании, так как они “отзовутся” на его появление. Электрическое поле электрона внесет возмущения в поведение виртуальных электронов и позитронов на протяжении их недолгого существования. Виртуальные позитроны будут притягиваться к электрону под действием силы электрического притяжения, а виртуальные электроны – отталкиваться от него. В распределении заряда возникает смещение, называемое поляризацией. То, что пустое пространство в присутствии электрического поля может стать электрически поляризованным, является любопытным следствием квантовой теории. Трудно представить себе вакуум, обладающий электрическими свойствами, однако поляризация вакуума – эффект вполне реальный и его нетрудно измерить экспериментально.
Поляризация вакуума приводит к тому, что вокруг электрона в вакууме возникает своего рода экран, нейтрализующий действие электрического заряда. Избавиться от этого экрана электрон никак не может, поскольку он является неотъемлемой частью облака виртуальных частиц, окружающих все электроны. Вследствие экранирования эффективный заряд электрона издали кажется меньше реального. Введя зонд внутрь облака, мы почувствовали бы “голый” электрон, имеющий гораздо больший заряд. По мере проникновения зонда в облако мы обнаружим, что простой закон обратных квадратов, выполняющийся на некотором расстоянии от заряда, перестает быть справедливым из-за облака виртуальных позитронов, окутывающих электрон. Таким образом, поляризация вакуума, или вакуумная экранировка, может изменить характер зависимости силы от расстояния.
Экранировка возникает и в глюонном поле, где она приводит к изменению цветового заряда кварков. Виртуальные антикварки стремятся облепить кварк “противоположного” цвета. Например, красный кварк притягивает облако антикрасных антикварков. Как и в случае электромагнитного взаимодействия, происходит частичная нейтрализация цветового заряда. Однако на этот раз Дополнительный вклад в поляризацию вакуума вносят глюоны.
Поскольку глюоны также обладают цветом, виртуальные глюоны в вакууме “откликаются” на присутствие кварка.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
Суперклей
Главный вызов теории бросает проблема удержания кварков в рамках калибровочных полей. Если бы удалось создать отдельный кварк, то он обладал бы определенным цветовым зарядом – красным, зеленым или синим. Но поскольку кварки удерживаются внутри адронов, мы не наблюдаем первичных цветов, а только ! “белые”, бесцветные, комбинации. Если удержание постоянно, то это означает, что по каким-то причинам природа запрещает появление “голого” цвета. Действует своеобразная цензура. Это объясняет, почему могут существовать изолированные лептоны, а не кварки: дело в том, что лептоны бесцветны.
А что произойдет, если попытаться просто-напросто силой вытолкнуть кварк из адрона? Каким суперклеем он удерживается там так прочно, что никогда не освобождается?
Важный ключ к разгадке природы взаимодействия между кварками был получен в экспериментах на СЛАКе (о которых мы упоминали ранее) при бомбардировке протонов электронами очень высоких энергии. Результаты экспериментов свидетельствовали о том, что на коротких расстояниях взаимодействие ослабевает и кварки по существу ведут себя, как свободные частицы. Более содержательную информацию удается извлечь из свойств мезонов, в которых кварк и антикварк образуют связанную систему, напоминающую атом водорода. Исследуя возбужденные состояния атома водорода, можно сделать вывод, что, поскольку электрическая сила, действующая между протоном и электроном, подчиняется закону обратных квадратов, их взаимное притяжение быстро уменьшается с расстоянием. Аналогичные исследования возбужденных состояний мезонов свидетельствуют о прямо противоположной ситуации. Если две частицы удаляются на большое рас" стояние и переходят в состояние с более высокой энергией, взаимодействие между ними не ослабевает, а усиливается.
Из полученных результатов следует, что взаимодействие между кварками носит странный характер. Все известные взаимодействия ослабевают с увеличением расстояния, тогда как в случае сил, действующих между кварками, наблюдается обратная картина. Они ведут себя, как кусок резины, который сопротивляется растяжению тем сильнее, чем больше его растягивают, и становится свободным, когда концы сближаются. Другой аналогией может служить цепь – кажется, что кварки внутри адронов скованы цепями. Когда кварки находятся близко друг к другу, цепи не ощущаются, и кварки в узких пределах ведут себя свободно и независимо. Но стоит лишь одному из кварков предпринять “попытку к бегству”, как цепь натягивается и резко тянет его назад. Физики называют эту ситуацию заточением или удержанием кварков.
Как только идея удержания кварков получила всеобщее признание, возникла мысль, способна ли КХД объяснить его. Вычисления оказались чрезвычайно трудными, хотя и выявили ряд обнадеживающих моментов. С физической точки зрения удалось в общих чертах понять, каким образом взаимодействие между кварками усиливается с ростом расстояния.
Основное различие между электромагнитным полем, в котором сила убывает с увеличением расстояния, и глюонным полем состоит в том, что фотоны не имеют электрического заряда. Если бы у них был электрический заряд, то мир изменился бы до неузнаваемости. В отличие от фотонов глюоны несут цветовой “заряд” в различных комбинациях, например в комбинации красно-антизеленый. Но цвет – источник сильного взаимодействия. Следовательно, глюоны не только соединяют кварки, но и стремятся соединиться друг о другом. Это существенно усложняет ситуацию, но тщательный анализ приводит к мысли, что эта универсальная “липкость” глюонов, возможно, является ключом к объяснению удержания кварков.
Чтобы уяснить это, нам придется вернуться к понятию квантового вакуума. Посмотрим прежде всего, что произойдет с электроном, если его поместить в вакуум. Напомним, что пространство вокруг электрона в действительности не пусто, а заполнено виртуальными частицами всевозможных сортов, в том числе виртуальными электронами и виртуальными позитронами. Хотя мы непосредственно не наблюдаем эти виртуальные частицы, известно, что они тем не менее существуют и могут создавать физические эффекты. Электрон, помещенный в вакуум, также “узнает” об их существовании, так как они “отзовутся” на его появление. Электрическое поле электрона внесет возмущения в поведение виртуальных электронов и позитронов на протяжении их недолгого существования. Виртуальные позитроны будут притягиваться к электрону под действием силы электрического притяжения, а виртуальные электроны – отталкиваться от него. В распределении заряда возникает смещение, называемое поляризацией. То, что пустое пространство в присутствии электрического поля может стать электрически поляризованным, является любопытным следствием квантовой теории. Трудно представить себе вакуум, обладающий электрическими свойствами, однако поляризация вакуума – эффект вполне реальный и его нетрудно измерить экспериментально.
Поляризация вакуума приводит к тому, что вокруг электрона в вакууме возникает своего рода экран, нейтрализующий действие электрического заряда. Избавиться от этого экрана электрон никак не может, поскольку он является неотъемлемой частью облака виртуальных частиц, окружающих все электроны. Вследствие экранирования эффективный заряд электрона издали кажется меньше реального. Введя зонд внутрь облака, мы почувствовали бы “голый” электрон, имеющий гораздо больший заряд. По мере проникновения зонда в облако мы обнаружим, что простой закон обратных квадратов, выполняющийся на некотором расстоянии от заряда, перестает быть справедливым из-за облака виртуальных позитронов, окутывающих электрон. Таким образом, поляризация вакуума, или вакуумная экранировка, может изменить характер зависимости силы от расстояния.
Экранировка возникает и в глюонном поле, где она приводит к изменению цветового заряда кварков. Виртуальные антикварки стремятся облепить кварк “противоположного” цвета. Например, красный кварк притягивает облако антикрасных антикварков. Как и в случае электромагнитного взаимодействия, происходит частичная нейтрализация цветового заряда. Однако на этот раз Дополнительный вклад в поляризацию вакуума вносят глюоны.
Поскольку глюоны также обладают цветом, виртуальные глюоны в вакууме “откликаются” на присутствие кварка.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88