https://www.dushevoi.ru/products/dushevye-kabiny/s-turetskoy-baney/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

при вычислении полной энергии фотонного облака она снова оказывается бесконечной.
Столкнувшись с такими результатами, теоретик может избавиться от бесконечно большой энергии, “перенормировав” ее, как это делалось в классической теории. Однако на этот раз все обстоит не так просто. Петля, изображенная на рис. 15, – лишь один из возможных процессов самодействия электрона. Возможны и более сложные петли самодействия, например изображенная на рис. 16. Здесь фотон создает “по дороге” виртуальную электрон-позитронную пару. Ясно, что по мере включения все более сложных петель неограниченно растет число способов, которыми электрон может воздействовать на самого себя, испуская виртуальные частицы. Каждая из таких петель вносит собственный бесконечный вклад в энергию системы. Вклад каждой мыслимой паутины таких петель оказывается бесконечным. И вместо одной-единственной бесконечности, как в классической теории, теперь мы сталкиваемся при вычислениях с нескончаемой последовательностью бесконечно больших членов. Можно попытаться изгнать бесконечности на каждом шаге, искусственно вычитая бесконечный член, но стоит расправиться с одной бесконечностью, как тотчас возникает другая. Положение кажется безвыходным.
Но от столь мрачной перспективы спасает своего рода чудо. Если эту устрашающую последовательность бесконечных членов надлежащим (с точки зрения математики) образом “упаковать”, то оказывается, что от всех бесконечностей можно избавиться сразу, одним махом. Единственное вычитание бесконечности, или перенормировка, позволяет устранить любую бесконечность, какой бы сложной петлей она ни создавалась. Разумеется, тридцать лет назад, когда это чудо возникло, доказать его эффективность стоило больших усилий. Не случись это, теория превратилась бы в бессмыслицу.
Естественно, теоретики были в восторге от достигнутого результата. Приятно сознавать, что метод действительно работает, что нет более ничего загадочного во взаимодействии электронов и фотонов. Физики назвали КЭД перенормируемой теорией и занялись проверкой слабых эффектов, обусловленных виртуальными частицами, которые получили столь убедительное экспериментальное подтверждение, например, в измеренном Лэмбом сдвиге уровней энергии атома водорода и малой поправке к собственному магнитному моменту электрона. Исключительное согласие теории с экспериментом на этом уровне описания показало, что виртуальные частицы и вакуумные эффекты – отнюдь не измышления теоретиков, не плод воображения. Они действительно необходимы, чтобы обеспечить точное описание атомного мира.
Вдохновленные этим замечательным успехом, теоретики обратились к другим типам взаимодействий с целью выяснить, не сработает ли и там перенормировка. Каждое силовое поле создает собственный набор бесконечных энергий (и других бесконечных величин). Физики надеялись, что чудесное исчезновение бесконечностей в КЭД повторится и в случае других взаимодействий.
К сожалению, их надежды не оправдались. Из четырех взаимодействий, существующих в природе, только электромагнитное, по-видимому, обладало чудесным свойством перенормируемости. Частицы-переносчики других взаимодействий (как мы представляем сегодня их природу) порождают бесконечное множество рас-ходимостей, от которых не удается избавиться одним махом, как в КЭД. Теоретики вернулись к доске, чтобы с мелом в руках попытаться понять, чем секрет успеха КЭД. Вскоре стало ясно, что он имеет отношение к симметрии.
Симметрия указывает путь
Историк и писатель Ч. П. Сноу написал книгу о “двух культурах”, которые существуют в современном технологическом обществе, – научной и художественной. Однако многие ученые обладают тонким художественным вкусом. Они великолепно разбираются в живописи и скульптуре, некоторые прекрасно играют на различных музыкальных инструментах, стремятся к глубокому пониманию стиля и красоты. Для ученых, особенно занимающихся теорией, сама наука может превратиться в вид искусства, тонкую смесь рационального и сверхъестественного.
В гл. 4 мы говорили о том, как эстетическое чутье влияет на развитие науки. Среди наиболее впечатляющих примеров роли эстетического начала – применение в фундаментальной физике симметрии в достаточно общем смысле. Действительно, в последние годы “симметрийная лихорадка” завладела умами в ряде областей физики. Теперь уже ни у кого не вызывает сомнения, что именно симметрия служит ключом к пониманию природы взаимодействий. По убеждению физиков, все взаимодействия существуют лишь для того, чтобы поддерживать в природе некий набор абстрактных симметрий.
Какое отношение имеет взаимодействие, или сила, к симметрии? Само предположение о существовании подобной связи кажется парадоксальным и непонятным. Сила – это то, что действует на вещество или изменяет природу частиц. Симметрия – понятие, связанное с гармонией и соразмерностью форм.
Для ответа на поставленный вопрос уточним прежде всего, что понимается под симметрией. Обычно считается, что предмет обладает симметрией, если он остается неизменным в результате той или иной проделанной над ним операции. Сфера симметрична, потому что выглядит одинаково при повороте на любой угол относительно ее центра. Арка собора симметрична, поскольку не меняет своего вида при перестановке правого и левого относительно вертикальной оси. Законы электричества симметричны относительно замены положительных зарядов отрицательными и наоборот. Число примеров можно легко увеличить.
Симметрии, на которых основан пересмотр нашего понимания четырех фундаментальных взаимодействий, совершенно особого рода. Это так называемые калибровочные симметрии. Некоторые простые примеры проявления этих абстрактных симметрий, например инвариантность законов механики относительно изменения отсчета (нулевого уровня) высоты, были приведены в гл. 4. Калибровочные симметрии связаны с идеей калибровки путем изменения отсчета уровня, масштаба или значения физической величины. Система обладает калибровочной симметрией, если ее природа остается неизменной при такого рода преобразовании. Попытаемся на простом примере разобраться, как абстрактное понятие калибровочного преобразования можно связать с более конкретным представлением о физической силе.
Представьте себе, что вы находитесь на борту космического корабля, летящего равномерно и прямолинейно в мировом пространстве вдали от планет и других небесных тел. Вы не ощущаете ни действия каких-либо сил, ни самого движения. Вы пребываете в состоянии полной невесомости и свободно парите в кабине. Вообразить такую картину не составляет особого труда.
Теперь подвергнем этот сценарий калибровочному преобразованию. Иначе говоря, попытаемся изменить описание путем калибровочного преобразования, т.е. изменения масштаба, некоторой величины, в данном случае – расстояния. Предположим, что космический корабль по-прежнему движется в пространстве с постоянной скоростью, но уже по траектории, проходящей параллельно предыдущей на расстоянии 1 км от нее. Что означало бы такое калибровочное преобразование для пассажира космического корабля? Ровно ничего, если говорить о силах.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
 https://sdvk.ru/Chugunnie_vanni/ 

 Венис Metropolitan