1. Развитие нервной системы
Нервная система делится на центральную и периферическую. В периферическую нервную систему входят корешки, сплетения и нервы. ЦНС состоит из головного и спинного мозга. Изучение онтогенеза ЦНС позволило установить, что головной мозг образуется из мозговых пузырей, возникающих в результате неравномерного роста передних отделов медуллярной трубки. Из этих пузырей формируются передний мозг, средний мозг и ромбовидный мозг. В дальнейшем из переднего мозга образуются конечный и промежуточный мозг, а ромбовидный мозг также разделяется соответственно на задний и продолговатый мозг.
Из конечного мозга соответственно формируются полушария большого мозга, базальные ганглии, из промежуточного мозга – таламус, эпиталамус, гипоталамус, метаталамус, зрительные тракты и нервы, сетчатка. Зрительные нервы и сетчатка являются отделами ЦНС, как бы вынесенными за пределы головного мозга. Из среднего мозга образуются пластинка четверохолмия и ножки мозга. Из заднего мозга формируются мост и мозжечок. Мост мозга граничит внизу с продолговатым мозгом. Задняя часть медуллярной трубки формирует спинной мозг, а ее полость превращается в центральный канал спинного мозга. В конечном мозге располагаются боковые желудочки, в промежуточном мозге – III желудочек, в среднем мозге – водопровод мозга, соединяющий III и IV желудочки; IV желудочек находится в заднем и продолговатом мозге.
1.2. Морфология нервной клетки
Основу нервной системы составляют нервные клетки. Кроме нервных клеток. в нервной системе имеются глиальные клетки и элементы соединительной ткани.
Структура нервных клеток различна. Существуют многочисленные классификации нервных клеток, основанные на форме их тела, протяженности и форме дендритов и других признаках.
По функциональному значению нервные клетки подразделяются на двигательные (моторные), чувствительные (сенсорные) и интернейроны.
Нервная клетка осуществляет две основные функции: а) специфическую – переработку поступающей на нейрон информации и передачу нервного импульса; б) биосинтетическую, направленную на поддержание своей жизнедеятельности. Это находит выражение и в ультраструктуре нервной клетки. Передача информации от одной нервной клетки к другой, объединение нервных клеток в системы и комплексы различной сложности определяют характерные структуры нервной клетки – аксоны, дендриты и синапсы. Органеллы, связанные с обеспечением энергетического обмена, белоксинтезирующей функцией клетки и др., встречаются в большинстве клеток, в нервных клетках они подчинены выполнению их основных функций – переработке и передаче информации.
Тело нервной клетки на электронно-микроскопических фотографиях представляет собой округлое и овальное образование. В центре клетки (или слегка эксцентрично) располагается ядро. Оно содержит ядрышко и окружено наружной и внутренней ядерными мембранами толщиной около 70 А каждая, разделенных перинуклеарным пространством, размеры которого вариабельны. В кариоплазме распределены глыбки хроматина, которые имеют тенденцию скапливаться у внутренней ядерной мембраны. Количество и распределение хроматина в кариоплазме вариабельны в различных нервных клетках.
В цитоплазме нервных клеток располагаются элементы зернистой и незернистой цитоплазматической сети, полисомы, рибосомы, митохондрии, лизосомы, многопузырчатые тельца и другие органеллы.
Структуру нервной клетки представляют: митохондрии, определяющие ее энергетический обмен; ядро, ядрышко, зернистая и незернистая эндоплазматическая сеть, пластинчатый комплекс, полисомы и рибосомы, в основном обеспечивающие белоксинтезирующую функцию клетки; лизосомы и фагосомы – основные органеллы «внутриклеточного пищеварительного тракта»; аксоны, дендриты и синапсы, обеспечивающие морфофункциональную связь отдельных клеток. Полиморфизм строения клеток определяется различной ролью отдельных нейронов в системной деятельности мозга в целом.
Понять структурно-функциональную организацию мозга в целом не представляется возможным без анализа распределения дендритов, аксонов и межнейрональных связей.
Дендриты и их разветвления определяют рецептивное поле той или иной клетки. Они очень вариабельны по форме, величине, разветвленное и ультраструктуре. Обычно от тела клетки отходит несколько дендритов. Количество дендритов, форма их отхождения от нейрона, распределение их ветвей являются определяющими в основанных на методах серебрения классификациях нейронов.
При электронно-микроскопическом исследовании обнаруживается, что тело нервных клеток постепенно переходит в дендрит, резкой границы и выраженных различий в ультраструктуре сомы нейрона и начального отдела крупного дендрита не наблюдается.
Аксоны, так же как и дендриты, играют важнейшую роль в структурно-функциональной организации мозга и механизмах системной его деятельности. Как правило, от тела нервной клетки отходит один аксон, который затем может отдавать многочисленные ветви.
Аксоны покрываются миелиновой оболочкой, образуя миелиновые волокна. Пучки волокон (в которых могут быть отдельные немиелинизированные волокна) составляют белое вещество мозга, черепные и периферические нервы.
При переходе аксона в пресинаптическое окончание, наполненное синаптическими пузырьками, аксон образует обычно колбовидное расширение.
Переплетения аксонов, дендритов и отростков глиальных клеток создают сложные, неповторяющиеся картины нейропиля. Однако именно распределение аксонов и дендритов, их взаиморасположение, афферентно-эфферентные взаимоотношения, закономерности синапсоархитектоники являются определяющим в механизмах замыкательной и интегративной функций мозга.
Взаимосвязи между нервными клетками осуществляются межнейрональными контактами, или синапсами. Синапсы делятся на аксосоматические, образованные аксоном с телом нервной клетки, аксодендритические, расположенные между аксоном и дендритом, и аксо-аксональные, находящиеся между двумя аксонами. Значительно реже встречаются дендро-дендритические синапсы, расположенные между дендритами.
В синапсе выделяют пресинаптический отросток, содержащий пресинаптические пузырьки, и постсинаптическую часть (дендрит, тело клетки или аксон). Активная зона синаптического контакта, в которой осуществляются выделение медиатора и передача импульса, характеризуется увеличением электронной плотности пресинаптической и постсинаптической мембран, разделенных синаптической щелью. По механизмам передачи импульса различают синапсы, в которых эта передача осуществляется с помощью медиаторов, и синапсы, в которых передача импульса происходит электрическим путем, без участия медиаторов.
Существенным моментом в синаптической передаче является то, что в разных системах межнейрональных связей используются различные медиаторы. В настоящее время известно около 30 химически активных веществ (ацетилхолин, дофамин, норадреналин, серотонин, ГАМК и др.), которые играют роль в синаптической передаче импульсов от одной нервной клетки к другой.
В последнее время в качестве посредников в синаптической передаче активно изучаются многочисленные нейропептиды, среди которых наибольшее внимание привлекают энкефалины и эндорфины, субстанция Р.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
Нервная система делится на центральную и периферическую. В периферическую нервную систему входят корешки, сплетения и нервы. ЦНС состоит из головного и спинного мозга. Изучение онтогенеза ЦНС позволило установить, что головной мозг образуется из мозговых пузырей, возникающих в результате неравномерного роста передних отделов медуллярной трубки. Из этих пузырей формируются передний мозг, средний мозг и ромбовидный мозг. В дальнейшем из переднего мозга образуются конечный и промежуточный мозг, а ромбовидный мозг также разделяется соответственно на задний и продолговатый мозг.
Из конечного мозга соответственно формируются полушария большого мозга, базальные ганглии, из промежуточного мозга – таламус, эпиталамус, гипоталамус, метаталамус, зрительные тракты и нервы, сетчатка. Зрительные нервы и сетчатка являются отделами ЦНС, как бы вынесенными за пределы головного мозга. Из среднего мозга образуются пластинка четверохолмия и ножки мозга. Из заднего мозга формируются мост и мозжечок. Мост мозга граничит внизу с продолговатым мозгом. Задняя часть медуллярной трубки формирует спинной мозг, а ее полость превращается в центральный канал спинного мозга. В конечном мозге располагаются боковые желудочки, в промежуточном мозге – III желудочек, в среднем мозге – водопровод мозга, соединяющий III и IV желудочки; IV желудочек находится в заднем и продолговатом мозге.
1.2. Морфология нервной клетки
Основу нервной системы составляют нервные клетки. Кроме нервных клеток. в нервной системе имеются глиальные клетки и элементы соединительной ткани.
Структура нервных клеток различна. Существуют многочисленные классификации нервных клеток, основанные на форме их тела, протяженности и форме дендритов и других признаках.
По функциональному значению нервные клетки подразделяются на двигательные (моторные), чувствительные (сенсорные) и интернейроны.
Нервная клетка осуществляет две основные функции: а) специфическую – переработку поступающей на нейрон информации и передачу нервного импульса; б) биосинтетическую, направленную на поддержание своей жизнедеятельности. Это находит выражение и в ультраструктуре нервной клетки. Передача информации от одной нервной клетки к другой, объединение нервных клеток в системы и комплексы различной сложности определяют характерные структуры нервной клетки – аксоны, дендриты и синапсы. Органеллы, связанные с обеспечением энергетического обмена, белоксинтезирующей функцией клетки и др., встречаются в большинстве клеток, в нервных клетках они подчинены выполнению их основных функций – переработке и передаче информации.
Тело нервной клетки на электронно-микроскопических фотографиях представляет собой округлое и овальное образование. В центре клетки (или слегка эксцентрично) располагается ядро. Оно содержит ядрышко и окружено наружной и внутренней ядерными мембранами толщиной около 70 А каждая, разделенных перинуклеарным пространством, размеры которого вариабельны. В кариоплазме распределены глыбки хроматина, которые имеют тенденцию скапливаться у внутренней ядерной мембраны. Количество и распределение хроматина в кариоплазме вариабельны в различных нервных клетках.
В цитоплазме нервных клеток располагаются элементы зернистой и незернистой цитоплазматической сети, полисомы, рибосомы, митохондрии, лизосомы, многопузырчатые тельца и другие органеллы.
Структуру нервной клетки представляют: митохондрии, определяющие ее энергетический обмен; ядро, ядрышко, зернистая и незернистая эндоплазматическая сеть, пластинчатый комплекс, полисомы и рибосомы, в основном обеспечивающие белоксинтезирующую функцию клетки; лизосомы и фагосомы – основные органеллы «внутриклеточного пищеварительного тракта»; аксоны, дендриты и синапсы, обеспечивающие морфофункциональную связь отдельных клеток. Полиморфизм строения клеток определяется различной ролью отдельных нейронов в системной деятельности мозга в целом.
Понять структурно-функциональную организацию мозга в целом не представляется возможным без анализа распределения дендритов, аксонов и межнейрональных связей.
Дендриты и их разветвления определяют рецептивное поле той или иной клетки. Они очень вариабельны по форме, величине, разветвленное и ультраструктуре. Обычно от тела клетки отходит несколько дендритов. Количество дендритов, форма их отхождения от нейрона, распределение их ветвей являются определяющими в основанных на методах серебрения классификациях нейронов.
При электронно-микроскопическом исследовании обнаруживается, что тело нервных клеток постепенно переходит в дендрит, резкой границы и выраженных различий в ультраструктуре сомы нейрона и начального отдела крупного дендрита не наблюдается.
Аксоны, так же как и дендриты, играют важнейшую роль в структурно-функциональной организации мозга и механизмах системной его деятельности. Как правило, от тела нервной клетки отходит один аксон, который затем может отдавать многочисленные ветви.
Аксоны покрываются миелиновой оболочкой, образуя миелиновые волокна. Пучки волокон (в которых могут быть отдельные немиелинизированные волокна) составляют белое вещество мозга, черепные и периферические нервы.
При переходе аксона в пресинаптическое окончание, наполненное синаптическими пузырьками, аксон образует обычно колбовидное расширение.
Переплетения аксонов, дендритов и отростков глиальных клеток создают сложные, неповторяющиеся картины нейропиля. Однако именно распределение аксонов и дендритов, их взаиморасположение, афферентно-эфферентные взаимоотношения, закономерности синапсоархитектоники являются определяющим в механизмах замыкательной и интегративной функций мозга.
Взаимосвязи между нервными клетками осуществляются межнейрональными контактами, или синапсами. Синапсы делятся на аксосоматические, образованные аксоном с телом нервной клетки, аксодендритические, расположенные между аксоном и дендритом, и аксо-аксональные, находящиеся между двумя аксонами. Значительно реже встречаются дендро-дендритические синапсы, расположенные между дендритами.
В синапсе выделяют пресинаптический отросток, содержащий пресинаптические пузырьки, и постсинаптическую часть (дендрит, тело клетки или аксон). Активная зона синаптического контакта, в которой осуществляются выделение медиатора и передача импульса, характеризуется увеличением электронной плотности пресинаптической и постсинаптической мембран, разделенных синаптической щелью. По механизмам передачи импульса различают синапсы, в которых эта передача осуществляется с помощью медиаторов, и синапсы, в которых передача импульса происходит электрическим путем, без участия медиаторов.
Существенным моментом в синаптической передаче является то, что в разных системах межнейрональных связей используются различные медиаторы. В настоящее время известно около 30 химически активных веществ (ацетилхолин, дофамин, норадреналин, серотонин, ГАМК и др.), которые играют роль в синаптической передаче импульсов от одной нервной клетки к другой.
В последнее время в качестве посредников в синаптической передаче активно изучаются многочисленные нейропептиды, среди которых наибольшее внимание привлекают энкефалины и эндорфины, субстанция Р.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195