Импульс г-кванта значительно больше первоначального импульса
электрона при условии, если длина волны г-лучей много меньше размеров атома.
Поэтому уже достаточно первого светового кванта, чтобы выбить электрон из
атома. Следовательно, нельзя никогда наблюдать более чем одну точку
траектории электрона; следовательно, утверждение, что нет никакой, в обычном
смысле, траектории электрона, не противоречит опыту. Следующее наблюдение --
третья стадия -- обнаруживает электрон, когда он вылетает из атома. Нельзя
наглядно описать, что происходит между двумя следующими друг за другом
наблюдениями. Конечно, можно было бы сказать, что электрон должен находиться
где-то между двумя наблюдениями и что, по-видимому, он описывает какое-то
подобие траектории, даже если невозможно эту траекторию установить. Такие
рассуждения имеют смысл с точки зрения классической физики. В квантовой
теории такие рассуждения представляют собой неоправданное злоупотребление
языком. В настоящее время мы можем оставить открытым вопрос о том, касается
ли это предложение формы высказывания об атомных процессах или самих
процессов, то есть касается ли это гносеологии или онтологии. Во всяком
случае, при формулировании положений, относящихся к поведению атомных
частиц, мы должны быть крайне осторожны.
Фактически мы вообще не можем говорить о частицах. Целесообразно во
многих экспериментах говорить о волнах материи, например о стоячей волне
вокруг ядра. Такое описание, конечно, будет противоречить другому описанию,
если не учитывать границы, установленные соотношением неопределенностей.
Этим ограничением ликвидируется противоречие. Применив понятия "волна
материи" целесообразно в том случае, если речь идет об излучении атома.
Излучение, обладая определенной частотой и интенсивностью, дает нам
информацию об изменяющемся распределении зарядов в атоме; при этом волновая
картина ближе стоит к истине, чем корпускулярная. Поэтому Бор советовал
применять обе картины. Их он назвал дополнительными. Обе картины,
естественно, исключают друг друга, так как определенный предмет не может в
одно и то же время быть и частицей (то есть субстанцией, ограниченной в
малом объеме) и волной (то есть полем, распространяющимся в большом объеме).
Но обе картины дополняют друг друга. Если использовать обе картины, переходя
от одной к другой и обратно, то в конце концов получится правильное
представление о примечательном виде реальности, который скрывается за нашими
экспериментами с атомами.
Бор при интерпретации квантовой теории в разных аспектах применяет
понятие дополнительности. Знание положения частицы дополнительно к знанию ее
скорости или импульса. Если мы знаем некоторую величину с большой точностью,
то мы не можем определить другую (дополнительную) величину с такой же
точностью, не теряя точности первого знания. Но ведь, чтобы описать
поведение системы, надо знать обе величины. Пространственно-временное
описание атомных процессов дополнительно к их каузальному или
детерминистскому описанию. Подобно функции координат в механике Ньютона,
функция вероятности удовлетворяет уравнению движения. Ее изменение с
течением времени полностью определяется квантово-механическими уравнениями,
но она не дает никакого пространственно-временного описания системы. С
другой стороны, для наблюдения требуется пространственно-временное описание.
Однако наблюдение, изменяя наши знания о системе, изменяет теоретически
рассчитанное поведение функции вероятности.
Вообще дуализм между двумя различными описаниями одной и той же
реальности не рассматривается больше как принципиальная трудность, так как
из математической формулировки теории известно, что теория не содержит
противоречий. Дуализм обеих дополнительных картин ярко выявляется в гибкости
математического формализма. Обычно этот формализм записывается таким
образом, что он похож на ньютонову механику с ее уравнениями движения для
координат и скоростей частиц. Путем простого преобразования этот формализм
можно представить волновым уравнением для трехмерных волн материи, только
эти волны имеют характер не простых величин поля, а матриц или операторов.
Этим объясняется, что возможность использовать различные дополнительные
картины имеет свою аналогию в различных преобразованиях математического фор-
мализма и в копенгагенской интерпретации не связана ни с какими
трудностями. Затруднения в понимании копенгагенской интерпретации возникают
всегда, когда задают известный вопрос: что в действительности происходит в
атомном процессе? Прежде всего, как уже выше говорилось, измерение и
результат наблюдения всегда описывается в понятиях классической физики. То,
что выводится из наблюдения, есть функция вероятности. Она представляет
собой математическое выражение того, что высказывания о возможности и
тенденции объединяются с высказыванием о нашем знании факта. Поэтому мы не
можем полностью определить результат наблюдения. Мы не в состоянии описать,
что происходит в промежутке между этим наблюдением и последующим. Прежде
всего это выглядит так, будто мы ввели субъективный элемент в теорию, будто
мы говорим, что то, что происходит, зависит от того, как мы наблюдаем
происходящее, или по крайней мере зависит от самого факта, что мы наблюдаем
это происходящее. Прежде чем разбирать это возражение, необходимо совершенно
точно выяснить, почему сталкиваются с подобными трудностями, когда стараются
описать, что происходит между двумя следующими друг за другом наблюдениями.
Целесообразно в этой связи обсудить следующий мысленный эксперимент.
Предположим, что точечный источник монохроматического света испускает свет
на черный экран, в котором имеются два маленьких отверстия. Поперечник
отверстия сравним с длиной волны света, а расстояние между отверстиями
значительно превышает длину волны света. На некотором расстоянии за экраном
проходящий свет падает на фотографическую пластинку. Если этот эксперимент
описывать в понятиях волновой картины, то можно сказать, что первичная волна
проходит через оба отверстия. Следовательно, образуются две вторичные
сферические волны, которые, беря начало у отверстий, интерферируют между
собой. Интерференция произведет на фотографической пластинке полосы сильной
и слабой интенсивности -- так называемые интерференционные полосы.
Почернение на пластинке представляет собой химический процесс, вызванный
отдельными световыми квантами.
Поэтому важно также описать эксперимент с точки зрения представлений о
световых квантах. Если бы можно было говорить о том, что происходит с
отдельным световым квантом в промежутке между его выходом из источника и
попаданием на фотографическую пластинку, то рассуждать можно было бы
следующим образом. Отдельный световой квант может пройти или только через
первое, или только через второе отверстие.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
электрона при условии, если длина волны г-лучей много меньше размеров атома.
Поэтому уже достаточно первого светового кванта, чтобы выбить электрон из
атома. Следовательно, нельзя никогда наблюдать более чем одну точку
траектории электрона; следовательно, утверждение, что нет никакой, в обычном
смысле, траектории электрона, не противоречит опыту. Следующее наблюдение --
третья стадия -- обнаруживает электрон, когда он вылетает из атома. Нельзя
наглядно описать, что происходит между двумя следующими друг за другом
наблюдениями. Конечно, можно было бы сказать, что электрон должен находиться
где-то между двумя наблюдениями и что, по-видимому, он описывает какое-то
подобие траектории, даже если невозможно эту траекторию установить. Такие
рассуждения имеют смысл с точки зрения классической физики. В квантовой
теории такие рассуждения представляют собой неоправданное злоупотребление
языком. В настоящее время мы можем оставить открытым вопрос о том, касается
ли это предложение формы высказывания об атомных процессах или самих
процессов, то есть касается ли это гносеологии или онтологии. Во всяком
случае, при формулировании положений, относящихся к поведению атомных
частиц, мы должны быть крайне осторожны.
Фактически мы вообще не можем говорить о частицах. Целесообразно во
многих экспериментах говорить о волнах материи, например о стоячей волне
вокруг ядра. Такое описание, конечно, будет противоречить другому описанию,
если не учитывать границы, установленные соотношением неопределенностей.
Этим ограничением ликвидируется противоречие. Применив понятия "волна
материи" целесообразно в том случае, если речь идет об излучении атома.
Излучение, обладая определенной частотой и интенсивностью, дает нам
информацию об изменяющемся распределении зарядов в атоме; при этом волновая
картина ближе стоит к истине, чем корпускулярная. Поэтому Бор советовал
применять обе картины. Их он назвал дополнительными. Обе картины,
естественно, исключают друг друга, так как определенный предмет не может в
одно и то же время быть и частицей (то есть субстанцией, ограниченной в
малом объеме) и волной (то есть полем, распространяющимся в большом объеме).
Но обе картины дополняют друг друга. Если использовать обе картины, переходя
от одной к другой и обратно, то в конце концов получится правильное
представление о примечательном виде реальности, который скрывается за нашими
экспериментами с атомами.
Бор при интерпретации квантовой теории в разных аспектах применяет
понятие дополнительности. Знание положения частицы дополнительно к знанию ее
скорости или импульса. Если мы знаем некоторую величину с большой точностью,
то мы не можем определить другую (дополнительную) величину с такой же
точностью, не теряя точности первого знания. Но ведь, чтобы описать
поведение системы, надо знать обе величины. Пространственно-временное
описание атомных процессов дополнительно к их каузальному или
детерминистскому описанию. Подобно функции координат в механике Ньютона,
функция вероятности удовлетворяет уравнению движения. Ее изменение с
течением времени полностью определяется квантово-механическими уравнениями,
но она не дает никакого пространственно-временного описания системы. С
другой стороны, для наблюдения требуется пространственно-временное описание.
Однако наблюдение, изменяя наши знания о системе, изменяет теоретически
рассчитанное поведение функции вероятности.
Вообще дуализм между двумя различными описаниями одной и той же
реальности не рассматривается больше как принципиальная трудность, так как
из математической формулировки теории известно, что теория не содержит
противоречий. Дуализм обеих дополнительных картин ярко выявляется в гибкости
математического формализма. Обычно этот формализм записывается таким
образом, что он похож на ньютонову механику с ее уравнениями движения для
координат и скоростей частиц. Путем простого преобразования этот формализм
можно представить волновым уравнением для трехмерных волн материи, только
эти волны имеют характер не простых величин поля, а матриц или операторов.
Этим объясняется, что возможность использовать различные дополнительные
картины имеет свою аналогию в различных преобразованиях математического фор-
мализма и в копенгагенской интерпретации не связана ни с какими
трудностями. Затруднения в понимании копенгагенской интерпретации возникают
всегда, когда задают известный вопрос: что в действительности происходит в
атомном процессе? Прежде всего, как уже выше говорилось, измерение и
результат наблюдения всегда описывается в понятиях классической физики. То,
что выводится из наблюдения, есть функция вероятности. Она представляет
собой математическое выражение того, что высказывания о возможности и
тенденции объединяются с высказыванием о нашем знании факта. Поэтому мы не
можем полностью определить результат наблюдения. Мы не в состоянии описать,
что происходит в промежутке между этим наблюдением и последующим. Прежде
всего это выглядит так, будто мы ввели субъективный элемент в теорию, будто
мы говорим, что то, что происходит, зависит от того, как мы наблюдаем
происходящее, или по крайней мере зависит от самого факта, что мы наблюдаем
это происходящее. Прежде чем разбирать это возражение, необходимо совершенно
точно выяснить, почему сталкиваются с подобными трудностями, когда стараются
описать, что происходит между двумя следующими друг за другом наблюдениями.
Целесообразно в этой связи обсудить следующий мысленный эксперимент.
Предположим, что точечный источник монохроматического света испускает свет
на черный экран, в котором имеются два маленьких отверстия. Поперечник
отверстия сравним с длиной волны света, а расстояние между отверстиями
значительно превышает длину волны света. На некотором расстоянии за экраном
проходящий свет падает на фотографическую пластинку. Если этот эксперимент
описывать в понятиях волновой картины, то можно сказать, что первичная волна
проходит через оба отверстия. Следовательно, образуются две вторичные
сферические волны, которые, беря начало у отверстий, интерферируют между
собой. Интерференция произведет на фотографической пластинке полосы сильной
и слабой интенсивности -- так называемые интерференционные полосы.
Почернение на пластинке представляет собой химический процесс, вызванный
отдельными световыми квантами.
Поэтому важно также описать эксперимент с точки зрения представлений о
световых квантах. Если бы можно было говорить о том, что происходит с
отдельным световым квантом в промежутке между его выходом из источника и
попаданием на фотографическую пластинку, то рассуждать можно было бы
следующим образом. Отдельный световой квант может пройти или только через
первое, или только через второе отверстие.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52