унитаз витра s50 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

построить квадрат, равновеликий по площади кругу данного радиуса. Эта задача была предметом непрерывного ряда усиленных изысканий греческих математиков и значительно повлияла на поразительные успехи геометрии в древности. Уже давно явилась догадка, что задача К. круга не может быть решена при помощи линейки и циркуля, хотя и не было точных доказательств этого предположения. В виду достаточного развития элементарной геометрии парижская акд. наук в 1775 г., а прочие академии несколько позднее объявили, что они не будут принимать на рассмотрение новые попытки решения К. круга, так как, не принося существенной пользы для науки, подобные изыскания стали бесцельно отнимать время и силы исследователей; в настоящее время ни одно учёное учреждение не станет рассматривать претенциозных статей с решением задачи о К. круга, а также задач об удвоении куба и трисекции угла и задачи о вечном движении После работ Эрмита и Линдемана можно считать доказанной абсолютную невозможность решения К. круга при помощи линейки и циркуля. Ныне этой задачей занимаются только люди, не пошедшие дальше элементарного курса математических наук и которые не вполне ясно понимают, чего собственно они добиваются. В большинстве случаев такие люди не знают истории сделанных до сих пор в этой области изысканий и результатов работ выдающихся ученых. Хотя, к сожалению, и теперь ещё в книжные магазины поступают брошюры, в которых авторы пытаются решить нерешимую задачу, однако большинство, хотя и смутно, сознаёт полную невозможность такого решения и слова: «ищет К. круга» являются уже давно синонимом бесплодной траты времени.
Площадь круга равна произведению p?R2 где (– отношение длины окружности к диаметру (или длина окружности при R = 1, от perijereia– окружность), а R – радиус круга. Очевидно, что существует квадрат, площадь которого равновелика. площади круга заданного радиуса; сторона такого квадрата должна равняться. Можно придумать множество геометрических приёмов для нахождения стороны этого квадрата, но, при нужных к тому построениях, придётся, кроме прямой линии и круга, употреблять некоторые другие кривые линии и строить особые механические приборы для их вычерчивания. Если говорится, что задача не решается линейкою и циркулем, то это никак не означает её невозможность, а то, что задача не может быть решена следующими двумя операциями (или известным числом повторений этих операций): 1) провести прямую через две заданные точки и продолжить эту прямую сколь угодно далеко в обе стороны (эта операция совершается при помощи линейки), и 2) вычертить круг, если указана некоторая точка, которую должно принять за центр и, если радиус круга указан так или иначе сделанными раньше построениями или, если этот радиус, по условию построения, можно взять произвольным. Эта операция совершается циркулем. В элементарной геометрии под решением задачи построением разумеется определение точки или линии при помощи последовательного ряда повторений указанных двух операций. Некоторые задачи могут быть решены и одною линейкою, как напр. построение касательной к кругу из данной внешней точки; без сомнения нелепо будет предположение, что и все задачи должны решаться одной линейкой. Точно также нелепо предположение, что все задачи должны решаться только линейкой и циркулем. Математические рассуждения, которые привели к полному и строгому доказательству невозможности решения некоторых задач при помощи только линейки и циркуля, основываются на следующих соображениях. Свойства прямой линии и круга, как показывается в аналитической геометрии, состоят в том, что какое бы ни было задано построение прямых и кругов, все точки пересечений таких линий дают отрезки, длины которых вычисляются из ряда уравнений первой степени или квадратных, так что подобные построения могут дать лишь такие отрезки, для вычисления длины которых нет надобности выходить из области уравнений первой и второй степеней. Задача К. круга потому невозможна при помощи только линейки и циркуля, что в этом случае приходится строить число ; что же касается числа p, следовательно, и квадратного корня из него, то это число, как показывают безусловно верные, а в последнее время даже очень просто доказанные теоремы, есть трансцендентное число, т. е. такое, которое не может удовлетворять никакому алгебраическому уравнению какой бы то ни было степени с целыми коэффициентами, т. е. уравнению вида:
A0xn + A1xn-1 + A2xn-2 + ... + An-1x + An = 0, где все коэффициенты A0, A1... числа целые.
Если бы задача К. круга решалась линейкою и циркулем, то число , следовательно, и само (строились бы при помощи последовательного и конечного ряда прямых и кругов, а потому число (можно было бы вычислить при помощи ряда уравнений первой степени и квадратных. Из алгебры известно, по какой бы ни был задан ряд уравнений первой и второй степеней и таких, что коэффициенты каждого следующего уравнения зависят от корней предыдущих, всегда можно этот ряд уравнений заменить одним, более высокой степени с целыми коэффициентами, а потому число p было бы корнем алгебраического уравнения, что невозможно. Из рассмотрения формулы . R ясно, что К. круга была бы найдена, если и помимо чисто геометрического построения удалось бы точно выразить длину окружности круга в частях радиуса или просто найти число, точно выражающее величину p. Соответственно этим разным постановкам вопроса, в истории изысканий К. круга встречаются – то чисто геометрические приёмы построений, то попытки вычисления величины p. Уже у египетских математиков находятся первые решения задачи, как построить квадрат, равновеликий данному кругу, или определить соотношение между окружностью и её диаметром. В британском музее хранится папирус Ринда, написанный Ахмесом за 2000 лет до Р. Хр., в котором автор называет своё решение сводом правил, известных ещё гораздо раньше. По Ахмесу, сторона квадрата, равновеликого площади круга, равна восьми девятым диаметра (так что p = 3,16). – У древних вавилонян и евреев принималось, что окружность ровно втрое больше диаметра и следовательно, p=3. – У греков, по словам Платона, К. круга занимался уже Анаксагор, во время своего пребывания в изгнании (V в. до Р. Хр.). Первая попытка указать «пределы» для числа p была сделана Бризоном, который справедливо говорит, что окружность круга должна быть меньше периметра многоугольника, описанного около неё и больше периметра вписанного в нее многоугольника. Гиппократ старался определить площадь круга при помощи так наз. «луночек». Динострат спрямил окружность при помощи построения особой кривой «квадратриссы». Замечательно, что знаменитый Евклид в своих «Элементах» геометрии совершенно не упоминает о К. круга и рассматривает только отношение площадей кругов разных радиусов. Совершенно самостоятельно и независимо от предшественников взглянул на эту задачу Архимед. Он вычислил периметры вписанных и описанных 96-ти угольников и показал, что величина p заключается между пределами 31/7 и 310/71; число 31/7= 22/7 и до сих пор во многих практических вопросах считается весьма удобным и достаточным приближением для p. Достойно удивления, что свои сложные и продолжительные вычисления Архимед производил во времена, когда не употреблялась ещё арабская система счисления.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 https://sdvk.ru/dushevie_poddony/ 

 Porcelanite Dos 1338