В полигоне частот число испытуемых
указывается точкой, расположенной над серединой интервала на высоте,
соответствующей его частоте, а сами точки последовательно соеди-
няются прямолинейными отрезками.
Если не считать незначительных отклонений, распределение, пред-
ставленное на рис. 1, напоминает колоколообразную нормальную кри-
вую. Идеальная нормальная кривая изображена на рис. 3. Этот тип кри-
вой обладает важными математическими свойствами, и на ней основаны
многие виды статистического анализа. Для наших целей, однако, важны
лишь некоторые из них. По существу эта кривая означает, что число слу-
чаев максимально в середине распределения и постепенно спадает к ее
краям. Кривая симметрична и имеет единственный пик в центре. Боль-
шинство распределений численных показателей-от роста и веса д< спо-
собностей и параметров личности-приближаются к нормальной кривой.
Вообще говоря, чем больше группа, тем ближе распределение к теорети-
ческой нормальной кривой.
Труппа тестовых показателей может быть описана в терминах той
или иной меры центральной тенденции. Такая мера указывает един-
ственный, наиболее типичный или репрезентативный результат, характе-
ризующий выполнение теста всей группой. Самой известной из таких мер
является среднее (точнее, среднеарифметическое) значение (М). Оно нахо-
Рис. 1.
340
320
300
280
260
240
220
200
180
Кривая полигона частот и гистограмма (по донным табл. 1)
69
НОРМЫ И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ТЕСТА
дится сложением всех результатов и делением получившейся суммы на
число случаев (N). Другой мерой центральной тенденции является мода,
или наиболее часто встречающийся результат. В частотном распределении
мода определяется как середина интервала, для которого частота макси-
мальна.Например, в табл. 1 мода находится посередине между 32 и 35,
т.е. равна 33,5. Отметим, что этот результат соответствует самой высо-
кой точке кривой распределения на рис. 1.Третья мера центральной тен-
денции-это медиана, т.е. результат, находящийся в середине последова-
тельности показателей, если их расположить в порядке возрастания или
убывания. Медиана есть точка, делящая распределение ровно пополам,
причем одна половина результатов лежит справа от нее, а другая слева.
Для более полного описания результатов теста используются меры
разброса данных, характеризующие степень индивидуальных отклонений
от центральной тенденции. Наиболее наглядным и известным способом
представления разброса является размах распределения, т. е. разность ме-
жду самым высоким и самым низким результатом. Но эта мера крайне
неточна и неустойчива, поскольку она определяется только двумя пока-
зателями. Единственный необычно высокий или низкий результат может
заметно повлиять на величину размаха. Более точный метод измерения
разброса основан на учете разности между каждым индивидуальным ре-
зультатом и средним значением по
группе.
Вгом месте следует обра-
титься к табл. 2, где приведены
расчеты рассматриваемых сейчас
мер, выполненные для 10 случаев.
Столь малая группа взята ради
наглядности, хотя на практике
вряд ли стоит выполнять подоб-
ные расчеты по столь незначитель-
ному числу случаев. В табл. 2
вводятся также принятые в статис-
тике обозначения, которые будут
использоваться и в дальнейшем.
Первичные результаты теста по
традиции обозначаются пропис-
ной буквой X, а малая буква х
служит для обозначения отклоне-
ния каждого индивидуального ре-
зультата от среднего значения по
группе. Греческая буква ? рас-
шифровывается как сумма. Сред-
нее значение и медиана опреде-
лены по данным, содержащимся
в первой колонке табл. 2. Среднее
значение равно 40, а медиана 40,5,
т.е. посередине между 40 и 41:
пять результатов (50Їо) лежат спра-
ва и пять слева от медианы. Мода
же для столь малой группы едва
ттт, м-гр-т рпт. найдена, поскольку
Таблица 2
Меры центральной тенденции и вариативности
ОтклонениеКвадрат
Значение показателяот среднегоотклонения
Ххx
,48+8 )64
\47+" 149
50>/" 43 )+209
случаев J41+1
t41+i ->1
Медиана == 40,5
40Ї 0
.438-24
J/o 36-}-20 16
случаев )34-36
32-8 )64
SX = 4001И =40 =
= 244
ZX400
М40
N10
21х1 Среднее отклонение = --- = -N40 - = 4 10
?x"244
Дисперсия-= o =N10= 24,4
Показатели
Рис. 2. Частотные распределения
с одним и тем же средним значе-
нием, но разным разбросом
ПРИНЦИПЫ ПСИХОЛОГИЧЕСКОГО ТЕСТИРОВАНИЯ
ный тестовый результат. Формально, од-
нако, модой является число 41, поскольку
этот результат показали два человека,
тогда как остальные результаты встре-
чаются лишь по одному разу.
Вторая колонка показывает, насколь-
ко каждый результат отклоняется в ту
или другую сторону от среднего значения
(40). Сумма этих отклонений всегда равна
нулю, так как положительные и отрица-
тельные отклонения от среднего обяза-
тельно уравновешивают друг друга ( + 20-
-20 = 0). Отбросив знаки отклонений и
усредняя их абсолютные значения, мы получаем меру, известную под
названием среднего отклонения. Символ \х\ в формуле среднего от-
клонения означает, что суммируются абсолютные значения при х.
Хотя среднее отклонение и может служить в качестве средства опи-
сания распределения, этот показатель не годится для математического
анализа данных из-за произвольного отбрасывания знаков .
П"ораздо более полезной мерой разброса является стандартное от-
клонение, обозначаемое буквой ет. .При ее вычислении отрицательные
знаки устраняются благодаря возведению каждого отклонения в ква-
драт, что видно из третьего столбца табл. 2. Сумма ?х
случаев -, известная под названием дисперсии, или среднего квадрата
отклонения , и обозначает, (г Дисперсия чрезвычайно удобна при выяс-
нении влияния различных факторов на индивидуальное выполнение те-
стовых заданий. Но в данный момент речь пойдет о стандартном откло-
нении, равном квадратному корню из дисперсии (см. табл. 2). Эта мера
широко применяется !При сравнении разбросов в различных группах. На
рис. 2, например, представлены два распределения, имеющие одно и то
же среднее значение, но отличающиеся разбросом. Распределение, харак-
теризуемое большими индивидуальными различиями, в отличие от рас-
пределений с различиями меньшими, имеет большее (7.
Как с помощью (7 можно выразить расположение индивидуальных
Пожалуй, еще важнее отсутствие у среднего отклонения многих свойств, которые
делали бы его удобным инструментом математического анализа. {Прим. ред.)
Автор применяет статистическую терминологию, следуя сложившейся в ряде дис-
циплин традиции, допускающей относительно свободную трактовку отдельных понятий
математической статистики. Согласно более строгому подходу, требующему в числе про-
чего большей дифференциации понятий, дисперсия, например, уже не является синонимом
среднего квадрата отклонения. Подобно, скажем, вероятности, она рассматривается как
идеализированная теоретическая величина, которую в принципе нельзя измерить эмпири-
ческими средствами и можно лишь косвенно оценить, считая ее приблизительно равной
некоей выборочной величине, непосредственно отражающей первичные (т.е. непреобразо-
ванные) данные опыта.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
указывается точкой, расположенной над серединой интервала на высоте,
соответствующей его частоте, а сами точки последовательно соеди-
няются прямолинейными отрезками.
Если не считать незначительных отклонений, распределение, пред-
ставленное на рис. 1, напоминает колоколообразную нормальную кри-
вую. Идеальная нормальная кривая изображена на рис. 3. Этот тип кри-
вой обладает важными математическими свойствами, и на ней основаны
многие виды статистического анализа. Для наших целей, однако, важны
лишь некоторые из них. По существу эта кривая означает, что число слу-
чаев максимально в середине распределения и постепенно спадает к ее
краям. Кривая симметрична и имеет единственный пик в центре. Боль-
шинство распределений численных показателей-от роста и веса д< спо-
собностей и параметров личности-приближаются к нормальной кривой.
Вообще говоря, чем больше группа, тем ближе распределение к теорети-
ческой нормальной кривой.
Труппа тестовых показателей может быть описана в терминах той
или иной меры центральной тенденции. Такая мера указывает един-
ственный, наиболее типичный или репрезентативный результат, характе-
ризующий выполнение теста всей группой. Самой известной из таких мер
является среднее (точнее, среднеарифметическое) значение (М). Оно нахо-
Рис. 1.
340
320
300
280
260
240
220
200
180
Кривая полигона частот и гистограмма (по донным табл. 1)
69
НОРМЫ И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ТЕСТА
дится сложением всех результатов и делением получившейся суммы на
число случаев (N). Другой мерой центральной тенденции является мода,
или наиболее часто встречающийся результат. В частотном распределении
мода определяется как середина интервала, для которого частота макси-
мальна.Например, в табл. 1 мода находится посередине между 32 и 35,
т.е. равна 33,5. Отметим, что этот результат соответствует самой высо-
кой точке кривой распределения на рис. 1.Третья мера центральной тен-
денции-это медиана, т.е. результат, находящийся в середине последова-
тельности показателей, если их расположить в порядке возрастания или
убывания. Медиана есть точка, делящая распределение ровно пополам,
причем одна половина результатов лежит справа от нее, а другая слева.
Для более полного описания результатов теста используются меры
разброса данных, характеризующие степень индивидуальных отклонений
от центральной тенденции. Наиболее наглядным и известным способом
представления разброса является размах распределения, т. е. разность ме-
жду самым высоким и самым низким результатом. Но эта мера крайне
неточна и неустойчива, поскольку она определяется только двумя пока-
зателями. Единственный необычно высокий или низкий результат может
заметно повлиять на величину размаха. Более точный метод измерения
разброса основан на учете разности между каждым индивидуальным ре-
зультатом и средним значением по
группе.
Вгом месте следует обра-
титься к табл. 2, где приведены
расчеты рассматриваемых сейчас
мер, выполненные для 10 случаев.
Столь малая группа взята ради
наглядности, хотя на практике
вряд ли стоит выполнять подоб-
ные расчеты по столь незначитель-
ному числу случаев. В табл. 2
вводятся также принятые в статис-
тике обозначения, которые будут
использоваться и в дальнейшем.
Первичные результаты теста по
традиции обозначаются пропис-
ной буквой X, а малая буква х
служит для обозначения отклоне-
ния каждого индивидуального ре-
зультата от среднего значения по
группе. Греческая буква ? рас-
шифровывается как сумма. Сред-
нее значение и медиана опреде-
лены по данным, содержащимся
в первой колонке табл. 2. Среднее
значение равно 40, а медиана 40,5,
т.е. посередине между 40 и 41:
пять результатов (50Їо) лежат спра-
ва и пять слева от медианы. Мода
же для столь малой группы едва
ттт, м-гр-т рпт. найдена, поскольку
Таблица 2
Меры центральной тенденции и вариативности
ОтклонениеКвадрат
Значение показателяот среднегоотклонения
Ххx
,48+8 )64
\47+" 149
50>/" 43 )+209
случаев J41+1
t41+i ->1
Медиана == 40,5
40Ї 0
.438-24
J/o 36-}-20 16
случаев )34-36
32-8 )64
SX = 4001И =40 =
= 244
ZX400
М40
N10
21х1 Среднее отклонение = --- = -N40 - = 4 10
?x"244
Дисперсия-= o =N10= 24,4
Показатели
Рис. 2. Частотные распределения
с одним и тем же средним значе-
нием, но разным разбросом
ПРИНЦИПЫ ПСИХОЛОГИЧЕСКОГО ТЕСТИРОВАНИЯ
ный тестовый результат. Формально, од-
нако, модой является число 41, поскольку
этот результат показали два человека,
тогда как остальные результаты встре-
чаются лишь по одному разу.
Вторая колонка показывает, насколь-
ко каждый результат отклоняется в ту
или другую сторону от среднего значения
(40). Сумма этих отклонений всегда равна
нулю, так как положительные и отрица-
тельные отклонения от среднего обяза-
тельно уравновешивают друг друга ( + 20-
-20 = 0). Отбросив знаки отклонений и
усредняя их абсолютные значения, мы получаем меру, известную под
названием среднего отклонения. Символ \х\ в формуле среднего от-
клонения означает, что суммируются абсолютные значения при х.
Хотя среднее отклонение и может служить в качестве средства опи-
сания распределения, этот показатель не годится для математического
анализа данных из-за произвольного отбрасывания знаков .
П"ораздо более полезной мерой разброса является стандартное от-
клонение, обозначаемое буквой ет. .При ее вычислении отрицательные
знаки устраняются благодаря возведению каждого отклонения в ква-
драт, что видно из третьего столбца табл. 2. Сумма
случаев -, известная под названием дисперсии, или среднего квадрата
отклонения , и обозначает, (г Дисперсия чрезвычайно удобна при выяс-
нении влияния различных факторов на индивидуальное выполнение те-
стовых заданий. Но в данный момент речь пойдет о стандартном откло-
нении, равном квадратному корню из дисперсии (см. табл. 2). Эта мера
широко применяется !При сравнении разбросов в различных группах. На
рис. 2, например, представлены два распределения, имеющие одно и то
же среднее значение, но отличающиеся разбросом. Распределение, харак-
теризуемое большими индивидуальными различиями, в отличие от рас-
пределений с различиями меньшими, имеет большее (7.
Как с помощью (7 можно выразить расположение индивидуальных
Пожалуй, еще важнее отсутствие у среднего отклонения многих свойств, которые
делали бы его удобным инструментом математического анализа. {Прим. ред.)
Автор применяет статистическую терминологию, следуя сложившейся в ряде дис-
циплин традиции, допускающей относительно свободную трактовку отдельных понятий
математической статистики. Согласно более строгому подходу, требующему в числе про-
чего большей дифференциации понятий, дисперсия, например, уже не является синонимом
среднего квадрата отклонения. Подобно, скажем, вероятности, она рассматривается как
идеализированная теоретическая величина, которую в принципе нельзя измерить эмпири-
ческими средствами и можно лишь косвенно оценить, считая ее приблизительно равной
некоей выборочной величине, непосредственно отражающей первичные (т.е. непреобразо-
ванные) данные опыта.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132