https://www.dushevoi.ru/brands/Roca/hall/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

1 - совпадение с "ключом>: 0 - несовпадение с <ключом>.
КОР
нормированного нормального распределения в точке, за которой лежит
- 100% площади под кривой (см. Нор-п
мальное распределение). Из данных
табл. 9 --=-=0,61; ордината нормиро-п 1о
ванного (единичного) нормального распределения (U), за которой лежит 61% площади под
кривой, равна 0,3836.
В отличие от других коэффициентов корреляции, /";," может принимать значения ниже -1 и
выше +1. В случае попадания значения в эти области делается вывод о некорректности
предположения о нормальном законе распределения Х или о распределении значений Х в
выборке с эксцессом значительно ниже нормального. Следует обратить внимание на то
обстоятельство, что при распределении переменных Х с эксцессом больше нормального
границы /"у, будут соответственно меньше пределов -1 и +1, что приведет к переоценке
степени связи. Это требует тщательной проверки свойств распределения при
использовании бисериального коэффициента корреляции.
При вычислении г и Гд" оперируют одинаковыми исходными данными, однако эти
коэффициенты не тождественны. Коэффициент Гр,, более строг при характеристике
степени связи между Х и У (bis> rpь Случаи, когда одна из переменных представлена в
дихотомической шкале, а другая - в порядковой, требуют применения коэффициента
рангово-бисе-риальной корреляции
=2-,
где Y, - средний ранг объектов, имеющих 1 по X; Уд - средний ранг объектов с 0 по X.
Пример вычислений приведен в табл. 11. Коэффициент г тесно связан с коэффициентом т
Кендалла. Особенно четко эта связь прослеживается при ана-
Таблица It Вычисление
рангово-бисериальной корреляции г д при сопоставлении результатов теста удевочек(1) и
мальчиков(О)


S я


\
g


X




1|
ё S
Вычисление
t-
Ё-


ад
Е;
а
Ё S-


S
sl
я
й>.
п.
S

1 0 1 =7,5; п=10
2 1 10 =4,2
30 2
2(7,5-4,2)

Ггь- 0,67
4 1 9
50 5
60 8
7 1 4
8 1 7
90 3
10 0 6

лизе корреляционной связи с помощью близкого к г коэффициента г" в случае
использования для его определения понятия совпадения и инверсии (см. Корреляция
ранговая):
г =p.-
рь П(,>1
где n.Q - число объектов с нулевой дихотомией; л; - число объектов с единичной
дихотомией; Р- сумма совпадений; Q - сумма инверсий.
При оценке значимости связи можно использовать критерий Стьюдента:
t=r


=2,5.
=0,67;
При количестве степеней свободы п = п - 2 = 8 tp = 2,306, при а = 0,05;
( > tp, следовательно, при а < 0,05 выявленная связь является статистически значимой.

КОР
КОРРЕЛЯЦИЯ КАЧЕСТВЕННЫХ ПРИЗНАКОВ - метод анализа связи переменных,
измеряемых в порядковых шкалах и шкалах наименований (см. Шкалы измерительные).
Наиболее часто такой корреляционный анализ проводят с помощью коэффициентов
корреляции ранговой, используемых в случаях, когда обе переменные измеряются в шка-
лах порядка или легко могут быть преобразованы в ранги. При измерении сравниваемых
переменных в шкалах наименований широко применяются коэффициенты сопряженности,
в которых в качестве промежуточной расчетной величины используется критерий согласия
Пирсона (см. Критерий X2). Наиболее часто в таких расчетах пользуются коэффициентом
сопряженности Пирсона:


Значение Р всегда положительно и измеряется от нуля до единицы. Особенностью
коэффициента сопряженности Пирсона является то, что максимальное его значение
всегда меньше +1 и в значительной степени зависит от количества наблюдений (размера
таблицы). В случае квадратной таблицы (k x k)
Так,в таблице размером (5 х 5) Р\ = = 0,894; в таблице (10 х 10) Р = 0,949. Поэтому
окончательной формой выражения связи между переменными с помощью коэффициента
Пирсона является его отношение к величине Рд для данного случая {Р/Р).
При расчете сопряженности находит применение также коэффициент Чупрова:
1-----у2-----
Т= , х
\n(t-\)(k-[)
где t - число столбцов таблицы, k - число строк таблицы.
В психологической диагностике описанные коэффициенты используются относительно
редко.
КОРРЕЛЯЦИЯ РАНГОВАЯ - метод корреляционного анализа, отражающий отношения
переменных, упорядоченных по возрастанию их значения. Наиболее часто К. р.
применяется для анализа связи между признаками, измеряемыми в порядковых шкалах
(см. Шкалы измерительные), а также как один из методов определения корреляции
качественных признаков. Достоинством коэффициентов К. р. является возможность их ис-
пользования независимо от характера распределения коррелирующих признаков.
В практике наиболее часто применяются такие ранговые меры связи, как коэффициенты К.
р. Спирмена и Кендалла. Первым этапом расчета коэффициентов К. р. является
ранжирование рядов переменных. Процедура ранжирования начинается с расположения
переменных по возрастанию их значений. Разным значениям присваиваются ранги,
обозначаемые натуральными числами. Если встречаются несколько равных по значению
переменных, им присваивается усредненный ранг(табл.12).
В табл. 13 приведены данные для расчета коэффициентов К. р. Во второй графе
представлены ранжированные показатели по первому из сравниваемых распределений
(оценка IQ, в третьей графе - соответствующие им данные теста зрительной памяти).
Коэффициент корреляции рангов Спирмена (/,) определяется из уравнения:
г,=1-
6Ы-
КОР
Таблица 12
Ранжирование распределения показателей теста (п = 18)
Тестов
ая
оценка
Порядковый номер
Ранг
20
1
1
17
2
2
16 16
;}3.5
3,5 3,5
15
5
5
14
6

7,5
14 14
7 8

7,5 7,5
14
9

7,5
12
10
10
10
11
11
9
12
12
7
13

14,5
7
14
13+16 ,,,
14,5
7
15
2 -145
14,5
7
16

14,5
5
17
17,0
3
18
18,0

Используя данные табл. 12, получаем:
-ir053
Коэффициент корреляции рангов Кендалла т определяется следующей формулой:
P-Q
-п(п-\)
где Р и Q рассчитываются по табл. 12. Так, в восьмой графе подсчитывается, начиная с
первого объекта X, сколько раз его ранг по У меньше, чем ранг объектов, расположенных
ниже. Соответственно в девятой графе (Sg) фиксируется, сколько раз ранг Y больше, чем
ранги, стоящие ниже его в столбце X. Подставляя эти данные в формулу,получаем:
т=
27-11
=0,36.
где ri, - разности между рангами каждой переменной из пар значений Х и У; n - число
сопоставляемых пар.
При сопоставлении приведенных коэффициентов оказывается, что коэффици-
Распределение /0-оценок и показателей теста зрительной памяти
Таблица 13
Номер
испыту
емого
/Q-
оценк
а (X)
Зрител
ьная
память
(Х)
РангЛ
"
Ранг
У
d
d2
Р
0
1
1,20
15
1
4
-3
9
5
2
2
1,00
15
2,5
4
-1,5
2,25
5
2
3
1,00
18
2,5
1
1,5
2,25
7
0
4
0,91
15
4,5
4
0,5
0,25
5
1
5
0,91
13
4,5
9
-4,5
20,25
0
3
6
0,90
13
6
9
-3
9
0
3
7
0,88
17
7
2
5
25
3
0
8
0,86
14
8
6,5
1,5
2,25
1
0
9
0,76
14
9
6,5
2,5
6,25
1
0
10
0,75
13
10
9
1
1
0
0
-
-
-
-
-
-
?=77,5;
S,=27;
S,=ll

145
кос ------------
ент т более информативен, чем г,, и рассчитывается проще. Поэтому на практике при
расчете К.. р. отдают предпочтение коэффициенту т.
КОСА КУБИКИ - невербальный тест интеллекта. Предложен К. Косом в 1920г.
Испытуемому предлагают составить фигуры из цветных кубиков по рисункам-образцам.
Тестовый материал состоит из шестнадцати кубиков с ребром 2,5 см, стороны которых
окрашены в красный, белый, желтый и синий цвета. Оставшиеся две противоположные
грани разделены по диагонали, причем одна окрашена в белый и красный цвета, а вторая
- в синий и желтый (см.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 https://sdvk.ru/Mebel_dlya_vannih_komnat/ 

 cersanit motive